water secretion
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 4)

H-INDEX

21
(FIVE YEARS 0)

2022 ◽  
Vol 12 ◽  
Author(s):  
Peter Holzer ◽  
Ulrike Holzer-Petsche

The development of small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists (gepants) and of monoclonal antibodies targeting the CGRP system has been a major advance in the management of migraine. In the randomized controlled trials before regulatory approval, the safety of these anti-CGRP migraine therapeutics was considered favorable and to stay within the expected profile. Post-approval real-world surveys reveal, however, constipation to be a major adverse event which may affect more than 50% of patients treated with erenumab (an antibody targeting the CGRP receptor), fremanezumab or galcanezumab (antibodies targeting CGRP). In this review article we address the question whether constipation caused by inhibition of CGRP signaling can be mechanistically deduced from the known pharmacological actions and pathophysiological implications of CGRP in the digestive tract. CGRP in the gut is expressed by two distinct neuronal populations: extrinsic primary afferent nerve fibers and distinct neurons of the intrinsic enteric nervous system. In particular, CGRP is a major messenger of enteric sensory neurons which in response to mucosal stimulation activate both ascending excitatory and descending inhibitory neuronal pathways that enable propulsive (peristaltic) motor activity to take place. In addition, CGRP is able to stimulate ion and water secretion into the intestinal lumen. The motor-stimulating and prosecretory actions of CGRP combine in accelerating intestinal transit, an activity profile that has been confirmed by the ability of CGRP to induce diarrhea in mice, dogs and humans. We therefore conclude that the constipation elicited by antibodies targeting CGRP or its receptor results from interference with the physiological function of CGRP in the small and large intestine in which it contributes to the maintenance of peristaltic motor activity, ion and water secretion and intestinal transit.


2020 ◽  
Vol 21 (9) ◽  
pp. 902-909
Author(s):  
Lei Chen ◽  
Yan Ding ◽  
Yapeng Hou ◽  
Yanhong Liu ◽  
Hongguang Nie

The epithelial layer, lining the inner surface of the mammalian alveolar, kidney, brain and colon, is a typical electrolyte transporting tissue. Large quantities of salt and fluid are actively moved from the mucosal side toward the blood vessel. Transepithelial salt re-absorption in epithelial tissues plays an important role in maintaining fluid homeostasis. In absorptive epithelium, fluid and salt flux is controlled by the machinery mainly composed of epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/K+-ATPase. Dysregulation of salt permeability across epithelium contributes to the pathogenesis of organ edema. In numerous ion transporters, epithelial Cl- transportation plays an important role in water secretion across epithelial tissues and regulation of body fluid content. Many traditional Chinese medicines treat diarrhea by regulating the Cl- electrolyte transport. We systematically summarized the recent progress regarding the traditional Chinese medicine on Cl- electrolyte transport in the intestinal epithelial tissues. The pharmaceutical relevance of developing advanced strategies to mitigate edematous disorders is also implicated. In conclusion, the crosstalk between Cl- electrolyte transport and active traditional Chinese medicine monomers may lead to the development of new strategies for diarrhea by manipulating the function and expression of ion channels.


2020 ◽  
Author(s):  
Clayton M. Carey ◽  
Sarah E. Apple ◽  
Zoё A. Hilbert ◽  
Michael S. Kay ◽  
Nels C. Elde

AbstractThe pathogenesis of infectious diarrheal diseases is largely attributed to enterotoxin proteins that disrupt intestinal water absorption, causing severe dehydration. Despite profound health consequences, the impacts of diarrhea-causing microbes on the evolutionary history of host species are largely unknown. We investigated patterns of genetic variation in mammalian Guanylate Cyclase-C (GC-C), an intestinal receptor frequently targeted by bacterial enterotoxins, to determine how hosts might adapt in response to diarrheal infections. Under normal conditions, GC-C interacts with endogenous guanylin peptides to promote water secretion in the intestine, but signaling can be hijacked by bacterially-encoded heat-stable enterotoxins (STa) during infection, which leads to overstimulation of GC-C and diarrhea. Phylogenetic analysis in mammals revealed evidence of recurrent positive selection in the GC-C ligand-binding domain in primates and bats, consistent with selective pressures to evade interactions with STa. Using in vitro assays and transgenic intestinal organoids to model STa-mediated diarrhea, we show that GC-C diversification in these lineages results in substantial variation in toxin susceptibility. In bats, we observe a unique pattern of compensatory coevolution in the endogenous GC-C ligand uroguanylin, reflecting intense bouts of positive selection at the receptor-ligand interface. These findings demonstrate control of water physiology as a previously unrecognized interface for genetic conflict and reveal diarrheal pathogens as a source of selective pressure among diverse mammals.


2018 ◽  
Vol 52 (6) ◽  
pp. 1801297 ◽  
Author(s):  
David B. Hill ◽  
Robert F. Long ◽  
William J. Kissner ◽  
Eyad Atieh ◽  
Ian C. Garbarine ◽  
...  

Cystic fibrosis (CF) is a recessive genetic disease that is characterised by airway mucus plugging and reduced mucus clearance. There are currently alternative hypotheses that attempt to describe the abnormally viscous and elastic mucus that is a hallmark of CF airways disease, including: 1) loss of CF transmembrane regulator (CFTR)-dependent airway surface volume (water) secretion, producing mucus hyperconcentration-dependent increased viscosity, and 2) impaired bicarbonate secretion by CFTR, producing acidification of airway surfaces and increased mucus viscosity.A series of experiments was conducted to determine the contributions of mucus concentration versus pH to the rheological properties of airway mucus across length scales from the nanoscopic to macroscopic.For length scales greater than the nanoscopic, i.e. those relevant to mucociliary clearance, the effect of mucus concentration dominated over the effect of airway acidification.Mucus hydration and chemical reduction of disulfide bonds that connect mucin monomers are more promising therapeutic approaches than alkalisation.


Author(s):  
Natiele Carla da Silva Ferreira ◽  
Romulo José Soares-Bezerra ◽  
Rebeca Ferreira Couto da Silveira ◽  
Clayton Menezes da Silva ◽  
Carla Santos de Oliveira ◽  
...  

P2Y2 and P2Y4 receptors are physiologically activated by UTP and are widely expressed in many cell types in humans. They promote an increase in intracellular calcium via PLCβ/ IP3 and act on ion flux and water secretion. P2Y2 plays an important role in inflammation and proliferation of tumor cells, which could be attenuated with the use of antagonists. However, little is known about the physiological functions related to P2Y4 due to the lack of selective ligands for these receptors, which can be solved through the search of novel compounds with antagonistic activity. In the present study, we have applied a methodology of calcium measurement to identify new antagonist candidates for these receptors. Firstly, we established optimal conditions for calcium assay using J774.G8, a murine macrophage cell line, which expresses functional P2Y2 and P2Y4 receptors. J774.G8 cells were loaded with 2 μM of Fluo-4 to test its sensitivity in responding calcium stimuli. ATP and ionomycin, known as inductors of intracellular calcium rise, were used to stimulate cells. The EC50 obtained were 11 μM and 103 nM, respectively. Subsequently, investigation of P2Y2 and P2Y4 expression was performed. These cells responded with EC50 of 1.021 μM to the UTP stimulation. Screening assays were performed and a total of 100 extracts from Brazilian natural products were tested. JA2, RA3, and RB3 extracts stood out for their ability to inhibit UTP-induced responses without causing cytotoxicity and presented IC50 of 32.32 μg/mL, 14.99 μg/mL, and 12.98 μg/mL, respectively. Collectively, our results point to the discovery of potential antagonists candidates from natural products for UTP-activated receptors.


2017 ◽  
Vol 114 (52) ◽  
pp. E11161-E11169 ◽  
Author(s):  
Mu He ◽  
Wenlei Ye ◽  
Won-Jing Wang ◽  
Eirish S. Sison ◽  
Yuh Nung Jan ◽  
...  

Chloride is the major free anion in the extracellular space (>100 mM) and within the cytoplasm in eukaryotes (10 ∼ 20 mM). Cytoplasmic Cl− level is dynamically regulated by Cl− channels and transporters. It is well established that movement of Cl− across the cell membrane is coupled with cell excitability through changes in membrane potential and with water secretion. However, whether cytoplasmic Cl− plays additional roles in animal development and tissue homeostasis is unknown. Here we use genetics, cell biological and pharmacological tools to demonstrate that TMEM16A, an evolutionarily conserved calcium-activated chloride channel (CaCC), regulates cytoplasmic Cl− homeostasis and promotes plasma membrane remodeling required for mammalian epithelial morphogenesis. We demonstrate that TMEM16A-mediated control of cytoplasmic Cl− regulates the organization of the major phosphoinositide species PtdIns(4,5)P2 into microdomains on the plasma membrane, analogous to processes that cluster soluble and membrane proteins into phase-separated droplets. We further show that an adequate cytoplasmic Cl− level is required for proper endocytic trafficking and membrane supply during early stages of ciliogenesis and adherens junction remodeling. Our study thus uncovers a critical function of CaCC-mediated cytoplasmic Cl− homeostasis in controlling the organization of PtdIns(4,5)P2 microdomains and membrane remodeling. This newly defined role of cytoplasmic Cl− may shed light on the mechanisms of intracellular Cl− signaling events crucial for regulating tissue architecture and organelle biogenesis during animal development.


2017 ◽  
Vol 95 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Janne P. Capra ◽  
Sinikka M. Eskelinen

A prerequisite for tissue electrolyte homeostasis is highly regulated ion and water transport through kidney or intestinal epithelia. In the present work, we monitored changes in the cell and luminal volumes of type II Madin-Darby canine kidney (MDCK) cells grown in a 3D environment in response to drugs, or to changes in the composition of the basal extracellular fluid. Using fluorescent markers and high-resolution spinning disc confocal microscopy, we could show that lack of sodium and potassium ions in the basal fluid (tetramethylammonium chloride (TMACl) buffer) induces a rapid increase in the cell and luminal volumes. This transepithelial water flow could be regulated by inhibitors and agonists of chloride channels. Hence, the driving force for the transepithelial water flow is chloride secretion, stimulated by hyperpolarization. Chloride ion depletion of the basal fluid (using sodium gluconate buffer) induces a strong reduction in the lumen size, indicating reabsorption of water from the lumen to the basal side. Lumen size also decreased following depolarization of the cell interior by rendering the membrane permeable to potassium. Hence, MDCK cells are capable of both absorption and secretion of chloride ions and water; negative potential within the lumen supports secretion, while depolarizing conditions promote reabsorption.


Sign in / Sign up

Export Citation Format

Share Document