Volatile anesthetics inhibit voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells

1995 ◽  
Vol 268 (2) ◽  
pp. L187-L191 ◽  
Author(s):  
M. Yamakage ◽  
C. A. Hirshman ◽  
T. L. Croxton

The relaxation of airway smooth muscle by volatile anesthetics is associated with a decreased concentration of intracellular free Ca2+. We hypothesized that inhibition of the entry of extracellular Ca2+ contributes to the relaxation. We therefore examined the effects of halothane, isoflurane, and sevoflurane on macroscopic voltage-activated Ca2+ currents (ICa) in porcine tracheal smooth muscle cells, using the whole cell patch-clamp technique. All three volatile anesthetics significantly inhibited ICa in a dose-dependent manner with no apparent shift in the voltage dependence of induced ICa. The order of inhibitory potencies for ICa was halothane < isoflurane < sevoflurane. When data were plotted as a function of the estimated anesthetic concentrations in the lipid phase, the potencies for inhibition of ICa by the three anesthetics were indistinguishable. We conclude that volatile anesthetics have an inhibitory effect on ICa of porcine tracheal smooth muscle cells at clinically relevant concentrations and that the inhibitory potencies of volatile anesthetics on ICa are closely related to their lipid-phase solubilities.

1992 ◽  
Vol 12 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Thomas A. Kent ◽  
Allahyar Jazayeri ◽  
J. Marc Simard

Cultures of smooth muscle cells were prepared from the basilar artery of adult guinea pigs. Passaged cultures (10–30 passages) that expressed serotonin receptors were studied using [3H]thymidine incorporation. When tested in quiescent medium, serotonin potently stimulated [3H]thymidine incorporation (EC50 of 31 n M) by as much as 400% at 24 h. The number of cells was not significantly increased at 24 or 48 h. At concentrations of 10−8–10−5 M 5-HT, [3H]thymidine uptake was reduced 40–50% by the dihydropyridine Ca2+ channel blocker, nifedipine (1 μ M). To demonstrate a possible mechanism for the sensitivity to nifedipine, Ca2+ currents were measured using the whole cell patch clamp technique. The cells expressed dihydropyridine-sensitive L-type Ca2+ channels, but not other subtypes of Ca2+ channels, as indicated by the kinetic and voltage-dependent characteristics of the current and by the stimulatory effect of Bay K 8644. The magnitude of the Ca2+ currents was related exponentially to the membrane surface area, measured as cell capacitance. These data support the association of dihydropyridine-sensitive Ca2+ channels with mitogenesis in vascular smooth muscle, and suggest an alternate mechanism of action for the beneficial effect of dihydropyridines in prophylaxis of cerebral vasospasm.


1995 ◽  
Vol 2 (3) ◽  
pp. 283-292
Author(s):  
Chuen-Mao Yang ◽  
Ming-Che Hsu ◽  
Richard Ong ◽  
Jen-Tsung Hsieh ◽  
Hui-Liang Tsao ◽  
...  

2005 ◽  
Vol 288 (4) ◽  
pp. G832-G841 ◽  
Author(s):  
Yukari Takeda ◽  
Sean M. Ward ◽  
Kenton M. Sanders ◽  
Sang Don Koh

In the tunica muscularis of the gastrointestinal (GI) tract, gap junctions form low-resistance pathways between pacemaker cells known as interstitial cells of Cajal (ICCs) and between ICC and smooth muscle cells. Coupling via these junctions facilitates electrical slow-wave propagation and responses of smooth muscle to enteric motor nerves. Glycyrrhetinic acid (GA) has been shown to uncouple gap junctions, but previous studies have shown apparent nonspecific effects of GA in a variety of tissues. We tested the effects of GA using isometric force measurements, intracellular microelectrode recordings, the patch-clamp technique, and the spread of Lucifer yellow within cultured ICC networks. In murine small intestinal muscles, β-GA (10 μM) decreased phasic contractions and depolarized resting membrane potential. Preincubation of GA inhibited the spread of Lucifer yellow, increased input resistance, and decreased cell capacitance in ICC networks, suggesting that GA uncoupled ICCs. In patch-clamp experiments of isolated jejunal myocytes, GA significantly decreased L-type Ca2+ current in a dose-dependent manner without affecting the voltage dependence of this current. The IC50 for Ca2+ currents was 1.9 μM, which is lower than the concentrations used to block gap junctions. GA also significantly increased large-conductance Ca2+-activated K+ currents but decreased net delayed rectifier K+ currents, including 4-aminopyridine and tetraethylammonium-resistant currents. In conclusion, the reduction of phasic contractile activity of GI muscles by GA is likely a consequence of its inhibitory effects on gap junctions and voltage-dependent Ca2+ currents. Membrane depolarization may be a consequence of uncoupling effects of GA on gap junctions between ICCs and smooth muscles and inhibition of K+ conductances in smooth muscle cells.


2007 ◽  
Vol 292 (3) ◽  
pp. L799-L812 ◽  
Author(s):  
Chiang-Wen Lee ◽  
Chih-Chung Lin ◽  
Wei-Ning Lin ◽  
Kao-Chih Liang ◽  
Shue-Feng Luo ◽  
...  

TNF-α has been shown to induce matrix metalloproteinase-9 (MMP-9) expression, which, in turn, degrades extracellular matrix in the inflammatory responses. However, the inductive mechanisms of the MMP-9 by TNF-α remain unclear. In human tracheal smooth muscle cells, TNF-α induced MMP-9 expression and Akt phosphorylation in a time-dependent manner, which was attenuated by the inhibitors of Src (PP1), epidermal growth factor receptor (AG1478), PDGFR (AG1296), and PI3K (LY294002), respectively, revealed by reporter gene assay, RT-PCR, zymographic, and Western blot analyses. Transfection with the dominant negative mutants of c-Src (KM, K295M [kinase inactive mutant]), p85, and Akt (KA, K179A) also reduced MMP-9 expression. These findings indicated that MMP-9 expression was regulated by PI3K/Akt via the transactivation of growth factor receptors. Furthermore, LY294002 or wortmannin inhibited Akt phosphorylation but had no effect on NF-κB translocation, which was blocked by helenalin. Mutated NF-κB DNA binding element in the MMP-9 promoter and helenalin also attenuated MMP-9 expression, suggesting that PI3K/Akt and NF-κB independently regulated MMP-9 expression. To support this notion, immunofluorescence staining and immunoprecipitation were applied to characterize the transcription factors involved in these responses. The results showed that LY294002 and curcumin blocked Akt translocation into nucleus. In contrast, p300, acetyl-histone (H3), and NF-κB p65 were found to be coimmunoprecipitated with the phosphorylated Akt, indicating that these components associated with the MMP-9 promoter are revealed by chromatin immunoprecipitation assay. Thus, our study provides a new insight into the molecular mechanisms that TNF-α-stimulated Akt phosphorylation mediated through transactivation of Src and growth factor receptors may stimulate the recruitment of p300, assemble transcription factor (p65), and then lead to MMP-9 expression.


2005 ◽  
Vol 288 (2) ◽  
pp. L227-L237 ◽  
Author(s):  
Chien-Chun Wang ◽  
Wei-Ning Lin ◽  
Chiang-Wen Lee ◽  
Chih-Chung Lin ◽  
Shue-Fen Luo ◽  
...  

Interleukin-1β (IL-1β) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways for IL-1β-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in human tracheal smooth muscle cells (HTSMC). IL-1β induced expression of VCAM-1 protein and mRNA in a time-dependent manner, which was significantly inhibited by inhibitors of MEK1/2 (U0126 and PD-98059), p38 (SB-202190), and c-Jun NH2-terminal kinase (JNK; SP-600125). Consistently, IL-1β-stimulated phosphorylation of p42/p44 MAPK, p38, and JNK was attenuated by pretreatment with U0126, SB-202190, or SP-600125, respectively. IL-1β-induced VCAM-1 expression was significantly blocked by the specific NF-κB inhibitors helenalin and pyrrolidine dithiocarbamate. As expected, IL-1β-stimulated translocation of NF-κB into the nucleus and degradation of IκB-α were blocked by helenalin but not by U0126, SB-202190, or SP-600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to a monolayer of HTSMC, which was blocked by pretreatment with helenalin, U0126, SB-202190, or SP-600125 before IL-1β exposure or by anti-VCAM-1 antibody. Together, these results suggest that in HTSMC, activation of p42/p44 MAPK, p38, JNK, and NF-κB pathways is essential for IL-1β-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of IL-1β action that cytokines may promote inflammatory responses in airway disease.


1993 ◽  
Vol 264 (2) ◽  
pp. C296-C301 ◽  
Author(s):  
K. Obara ◽  
H. Yabu

The effects of okadaic acid (OA) and calyculin A (CL-A), potent inhibitors of protein phosphatases type 1 (PP1) and type 2A (PP2A), on inward current carried by Ba2+ through voltage-dependent Ca2+ channel in guinea pig teniae coli smooth muscle cells were investigated using whole-cell patch-clamp technique. High concentrations of OA (5 x 10(-8)-5 x 10(-6) M) and CL-A (10(-9)-10(-7) M) dose dependently increased the inward current. The concentration producing apparent half-maximum enhancing effect values for OA and CL-A were 1.12 x 10(-7) and 1.78 x 10(-9) M, respectively. CL-A appeared to be approximately 100-fold more potent in increasing the inward current than OA. Lower concentrations of OA (10(-10)-2 x 10(-8) M) and CL-A (10(-11)-10(-9) M) decreased the inward current. The maximum inhibitory effects of OA and CL-A were observed at 10(-8) M OA and 5 x 10(-10) M CL-A, respectively. CL-A is approximately 100 times more effective inhibitor of PP1 than OA, and lower concentrations of OA and CL-A used in the present study inhibit PP2A activity, but they have no or little effect on PP1 activity (Ishihara, H., B. L. Martin, D. L. Brautigan, H. Karaki, H. Ozaki, Y. Kato, N. Fusetani, S. Watabe, K. Hashimoto, D. Uemura and D. J. Hartshorne. Biochem. Biophys. Res. Commun. 159: 871-877, 1989). In the absence of ATP in pipette solution, OA and CL-A did not affect the inward current.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 271 (6) ◽  
pp. H2462-H2468 ◽  
Author(s):  
T. Kleppisch ◽  
B. Winter ◽  
M. T. Nelson

Organ cultures of arteries have been used to study growth responses, proliferation, and contractility. However, the function of specific-ion channels in cultured arteries has not been investigated. ATP-sensitive K+ (KATP) channels play an important role in the control of arterial tone. The goal of this study was to determine the functional state of KATP channels in arteries kept in culture. Segments from rabbit mesenteric arteries were cultured in for 2-7 days. To explore the properties of KATP channels, the effects of KATP-channel modulators and other vasoactive substances on isometric force, density, and modulation of KATP currents in single smooth muscle cells isolated from cultured vessels were examined. Isometric contractions were measured with a resistance-vessel myograph. Whole cell KATP currents were recorded with the patch-clamp technique. Membrane capacitance and KATP-current density in single smooth muscle cells from freshly dissected (control) and cultured arteries were not altered. At -60 mV, glibenclamide-sensitive currents in the presence of the K(+)-channel opener pinacidil were -4.7 +/- 1.2, -4.7 +/- 0.6, and -4.6 +/- 0.7 pA/pF for control and 2- and 4-day arteries, respectively. Inhibitory modulation of KATP currents in arterial smooth muscle also remained intact for 4 days in culture; the vasoconstrictor histamine (10 microM) reduced glibenclamide-sensitive currents in the presence of pinacidil by 61.2 +/- 2.8, 42.4 +/- 10.1, and 41.2 +/- 6.1% for control and 2- and 4-day arteries, respectively. Pinacidil relaxed control and cultured arteries (1-7 days) in a dose-dependent manner. Half-maximal effective concentrations of pinacidil were 0.42, 0.24, 0.23, and 0.51 microM for control and 2-, 4-, and 7-day arteries, respectively, whereas maximal relaxations to pinacidil were 62.9, 47.5, 37.5, and 55.7% for control and 2-, 5-, and 7-day arteries, respectively. Histamine, norepinephrine, and serotonin constricted cultured arteries, although responses to histamine and norepinephrine diminished by 30-50% after 5 days in culture. The relaxant effect of acetylcholine was not maintained in cultured arteries. Sodium nitroprusside, however, effectively relaxed arteries cultured for 2-7 days. The data indicate that with the culture model described, KATP channels in arterial smooth muscle remained functional and contractile responses in arterial segments were maintained for up to 7 days. These results suggest that this approach can be used to study either long-term regulation of KATP channels or the role of this channel type in growth responses.


1995 ◽  
Vol 2 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Chuen-Mao Yang ◽  
Ming-Che Hsu ◽  
Richard Ong ◽  
Jen-Tsung Hsieh ◽  
Hui-Liang Tsao ◽  
...  

2021 ◽  
pp. 437-446
Author(s):  
Q CHEN ◽  
Z JIANG ◽  
J ZHANG ◽  
L CAO ◽  
Z CHEN

Gastrointestinal motility was disturbed in W/Wv, which were lacking of interstitial cells of Cajal (ICC). In this study, we have investigated the role of arecoline hydrobromide (AH) on smooth muscle motility in the jejunum of W/Wv and wild-type (WT) mice. The jejunum tension was recorded by an isometric force transducer. Intracellular recording was used to identify whether AH affects slow wave and resting membrane potential (RMP) in vitro. The whole-cell patch clamp technique was used to explore the effects of AH on voltage-dependent potassium channels for jejunum smooth muscle cells. AH enhanced W/Wv and WT jejunum contractility in a dose-dependent manner. Atropine and nicardipine completely blocked the excitatory effect of AH in both W/Wv and WT. TEA did not reduce the effect of AH in WT, but was sufficient to block the excitatory effect of AH in W/Wv. AH significantly depolarized the RMP of jejunum cells in W/Wv and WT. After pretreatment with TEA, the RMP of jejunum cells indicated depolarization in W/Wv and WT, but subsequently perfused AH had no additional effect on RMP. AH inhibited the voltage-dependent K+ currents of acutely isolated mouse jejunum smooth muscle cells. Our study demonstrate that AH enhances the contraction activity of jejunum smooth muscle, an effect which is mediated by voltage-dependent potassium channels that acts to enhance the excitability of jejunum smooth muscle cells in mice.


Sign in / Sign up

Export Citation Format

Share Document