scholarly journals In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss

2018 ◽  
Vol 51 (5) ◽  
pp. 1701680 ◽  
Author(s):  
Igor L. Chernyavsky ◽  
Richard J. Russell ◽  
Ruth M. Saunders ◽  
Gavin E. Morris ◽  
Rachid Berair ◽  
...  

Bronchial thermoplasty is a treatment for asthma. It is currently unclear whether its histopathological impact is sufficiently explained by the proportion of airway wall that is exposed to temperatures necessary to affect cell survival.Airway smooth muscle and bronchial epithelial cells were exposed to media (37–70°C) for 10 s to mimic thermoplasty. In silico we developed a mathematical model of airway heat distribution post-thermoplasty. In vivo we determined airway smooth muscle mass and epithelial integrity pre- and post-thermoplasty in 14 patients with severe asthma.In vitro airway smooth muscle and epithelial cell number decreased significantly following the addition of media heated to ≥65°C. In silico simulations showed a heterogeneous heat distribution that was amplified in larger airways, with <10% of the airway wall heated to >60°C in airways with an inner radius of ∼4 mm. In vivo at 6 weeks post-thermoplasty, there was an improvement in asthma control (measured via Asthma Control Questionnaire-6; mean difference 0.7, 95% CI 0.1–1.3; p=0.03), airway smooth muscle mass decreased (absolute median reduction 5%, interquartile range (IQR) 0–10; p=0.03) and epithelial integrity increased (14%, IQR 6–29; p=0.007). Neither of the latter two outcomes was related to improved asthma control.Integrated in vitro and in silico modelling suggest that the reduction in airway smooth muscle post-thermoplasty cannot be fully explained by acute heating, and nor did this reduction confer a greater improvement in asthma control.

1990 ◽  
Vol 69 (3) ◽  
pp. 995-1001 ◽  
Author(s):  
J. H. Bates ◽  
J. G. Martin

If airway smooth muscle shortened in vivo to the extent that it does in vitro, then maximal bronchoconstriction would result in complete closure of virtually all airways. The fact that this does not happen indicates the existence of inhibitory mechanisms preventing maximal muscle shortening. There are many factors potentially limiting shortening in vivo. In this study we investigated one of these factors, the orientation of the smooth muscle around the airway wall. The airway was modeled as a cylinder of given wall thickness around which the muscle was wound as a spiral. The longitudinal and circumferential elasticities of the airway were embodied in a 2 x 2 matrix of elastic coefficients. We investigated smooth muscle shortening under three conditions: 1) a longitudinally stiff airway, 2) a circumferentially stiff airway, and 3) a longitudinally and circumferentially compressible airway. In case 1, for a given degree of smooth muscle shortening, airway resistance increased markedly with increasing pitch of the smooth muscle spiral. On the other hand, the muscle tension required to elicit a given change in resistance also increased markedly with pitch. In case 2, the effect with increasing pitch was reversed. In case 3, resistance first increased and then decreased as spiral pitch increased. Similarly, the muscle tension required to elicit a given change in resistance first increased and then decreased with pitch. These results suggest that the orientation of the smooth muscle about the airway may be very important in determining airway responsiveness.


2008 ◽  
Vol 104 (3) ◽  
pp. 610-615 ◽  
Author(s):  
Z. Xue ◽  
L. Zhang ◽  
Y. Liu ◽  
S. J. Gunst ◽  
R. S. Tepper

The mechanical stress imposed on the lungs during breathing is an important modulator of airway responsiveness in vivo. Our recent study demonstrated that continuous positive airway pressure applied to the lungs of nonanesthetized, tracheotomized rabbits for 4 days decreased lower respiratory system responsiveness to challenge with ACh (Xue Z, Zhang L, Ramchandani R, Liu Y, Antony VB, Gunst SJ, Tepper RS. J. Appl Physiol 99: 677–682, 2005). In addition, airway segments excised from the lungs of these animals and studied in vitro exhibited reduced contractility. However, the mechanism for this reduction in contractility was not determined. The stress-induced decrease in airway responsiveness could have resulted from alterations in the excitation-contraction coupling mechanisms of the smooth muscle cells, or it might reflect changes in the structure and/or composition of the airway wall tissues. In the present study, we assessed the effect of prolonged chronic stress of the lungs in vivo on airway smooth muscle force generation, myosin light chain phosphorylation, and airway wall structure. To enhance the potential development of stress-induced structural changes, we applied mechanical stress for a prolonged period of time of 2–3 wk. Our results demonstrate a direct connection between the decreased airway responsiveness caused by chronic mechanical stress of the lungs in vivo and a persistent decrease in contractile protein activation in the airway smooth muscle isolated from those lungs. The chronic stress also caused an increase in airway size but no detectable changes in the composition of the airway wall.


1995 ◽  
Vol 268 (2) ◽  
pp. L201-L206 ◽  
Author(s):  
C. Vannier ◽  
T. L. Croxton ◽  
L. S. Farley ◽  
C. A. Hirshman

Hypoxia dilates airways in vivo and reduces active tension of airway smooth muscle in vitro. To determine whether hypoxia impairs Ca2+ entry through voltage-dependent channels (VDC), we tested the ability of dihydropyridines to modulate hypoxia-induced relaxation of KCl- and carbamyl choline (carbachol)-contracted porcine bronchi. Carbachol- or KCl-contracted bronchial rings were exposed to progressive hypoxia in the presence or absence of 1 microM BAY K 8644 (an L-type-channel agonist). In separate experiments, rings were contracted with carbachol or KCl, treated with nifedipine (a VDC antagonist), and finally exposed to hypoxia. BAY K 8644 prevented hypoxia-induced relaxation in KCl-contracted bronchi. Nifedipine (10(-5) M) totally relaxed KCl- contracted bronchi. Carbachol-contracted bronchi were only partially relaxed by nifedipine but were completely relaxed when the O2 concentration of the gas was reduced from 95 to 0%. These data indicate that hypoxia can reduce airway smooth muscle tone by limiting entry of Ca2+ through a dihydropyridine-sensitive pathway, but that other mechanisms also contribute to hypoxia-induced relaxation of carbachol-contracted bronchi.


Author(s):  
Ynuk Bossé

The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.


2002 ◽  
Vol 93 (4) ◽  
pp. 1296-1300 ◽  
Author(s):  
Debra J. Turner ◽  
Peter B. Noble ◽  
Matthew P. Lucas ◽  
Howard W. Mitchell

Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0–20 cmH2O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls ( P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi ( P < 0.01) and smooth muscle strips ( P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.


2003 ◽  
Vol 95 (1) ◽  
pp. 448-453 ◽  
Author(s):  
Jahanbakhsh Naghshin ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

It has been shown that airway smooth muscle in vitro is able to maintain active force over a large length range by adaptation in the absence of periodic stimulations at 4°C (Wang L, Paré PD, and Seow CY. J Appl Physiol 90: 734–740, 2001). In this study, we show that such adaptation also takes place at body temperature and that long-term adaptation results in irreversible functional change in the muscle that could lead to airway hyperresponsiveness. Rabbit tracheal muscle explants were passively maintained at shortened and in situ length for 3 and 7–8 days in culture media; the length-tension relationship was then examined. The length associated with maximal force generation decreased by 10.5 ± 3.8% (SE) after 3 days and 37.7 ± 8.5% after 7 or 8 days of passive shortening. At day 3, the left shift in the length-tension curve due to adaptation at short lengths was reversible by readapting the muscle at a longer length. The shift was, however, not completely reversible after 7 days. The results suggest that long-term adaptation of airway smooth muscle could lead to increased muscle stiffness and force-generating ability at short lengths. Under in vivo condition, this could translate into resistance to stretch-induced relaxation and excessive airway narrowing.


2013 ◽  
Vol 32 (3) ◽  
pp. 629-636 ◽  
Author(s):  
XIN ZENG ◽  
YING CHENG ◽  
YUEJUN QU ◽  
JIDE XU ◽  
ZHIYUAN HAN ◽  
...  

1992 ◽  
Vol 70 (4) ◽  
pp. 602-606 ◽  
Author(s):  
Philip Robinson ◽  
Mitsushi Okazawa ◽  
Tony Bai ◽  
Peter Paré

The degree of airway smooth muscle contraction and shortening that occurs in vivo is modified by many factors, including those that influence the degree of muscle activation, the resting muscle length, and the loads against which the muscle contracts. Canine trachealis muscle will shorten up to 70% of starting length from optimal length in vitro but will only shorten by around 30% in vivo. This limitation of shortening may be a result of the muscle shortening against an elastic load such as could be applied by tracheal cartilage. Limitation of airway smooth muscle shortening in smaller airways may be the result of contraction against an elastic load, such as could be applied by lung parenchymal recoil. Measurement of the elastic loads applied by the tracheal cartilage to the trachealis muscle and by lung parenchymal recoil to smooth muscle of smaller airways were performed in canine preparations. In both experiments the calculated elastic loads applied by the cartilage and the parenchymal recoil explained in part the limitation of maximal active shortening and airway narrowing observed. We conclude that the elastic loads provided by surrounding structures are important in determining the degree of airway smooth muscle shortening and the resultant airway narrowing.Key words: elastic loads, tracheal cartilage, airway smooth muscle shortening.


2017 ◽  
Vol 312 (3) ◽  
pp. L348-L357 ◽  
Author(s):  
Morgan Gazzola ◽  
Katherine Lortie ◽  
Cyndi Henry ◽  
Samuel Mailhot-Larouche ◽  
David G. Chapman ◽  
...  

Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.


2008 ◽  
Vol 104 (6) ◽  
pp. 1601-1610 ◽  
Author(s):  
Ana Cojocaru ◽  
Charles G. Irvin ◽  
Hans C. Haverkamp ◽  
Jason H. T. Bates

Allergic inflammation is known to cause airway hyperresponsiveness in mice. However, it is not known whether inflammation affects the stiffness of the airway wall, which would alter the load against which the circumscribing smooth muscle shortens when activated. Accordingly, we measured the time course of airway resistance immediately following intravenous methacholine injection in acutely and chronically allergically inflamed mice. We estimated the effective stiffness of the airway wall in these animals by fitting to the airway resistance profiles a computational model of a dynamically narrowing airway embedded in elastic parenchyma. Effective airway wall stiffness was estimated from the model fit and was found not to change from control in either the acute or chronic inflammatory groups. However, the acutely inflamed mice were hyperresponsive compared with controls, which we interpret as reflecting increased delivery of methacholine to the airway smooth muscle through a leaky pulmonary endothelium. These results support the notion that acutely inflamed BALB/c mice represent an animal model of functionally normal airway smooth muscle in a transiently abnormal lung.


Sign in / Sign up

Export Citation Format

Share Document