Human respiratory syncytial virus affects nonadrenergic noncholinergic inhibition in cotton rat airways

1995 ◽  
Vol 268 (6) ◽  
pp. L1006-L1011 ◽  
Author(s):  
G. N. Colasurdo ◽  
V. G. Hemming ◽  
G. A. Prince ◽  
J. E. Loader ◽  
J. P. Graves ◽  
...  

A dysfunction of the nonadrenergic noncholinergic inhibitory (NANCi) system has been invoked as a possible mechanism underlying or contributing to altered airway function. In the present study we assessed whether human respiratory syncytial virus (HRSV) infection affects the airways' neurally mediated contractile and relaxant (NANCi) responses in vitro. NANCi responses were studied on tracheal smooth muscle (TSM) segments obtained from young adult cotton rats, a well-established model for HRSV infection. To assess NANCi responses, TSM segments were removed and placed in tissue baths containing modified Krebs-Henseleit, atropine (1 x 10(-6) M) and propranolol (5 x 10(-6) M). After contraction with neurokinin A (1 x 10(-5) M), electrical field stimulation (EFS) was applied at stimulation frequencies ranging from 5 to 30 Hz. The NANCi responses were measured and expressed as the mean (+/- SE) percent relaxation. To evaluate neurally mediated contractile responses, full frequency response curves (0.5-30 Hz) to EFS were also performed. We found significantly decreased NANCi responses in TSM segments obtained from infected cotton rats (n = 12) compared with control animals (n = 9) (P < 0.002). Furthermore, the contractile responses to EFS were increased in infected animals compared with the control group (P = 0.0001). These findings demonstrate that HRSV infection leads to an enhanced contractile response to EFS and a significant decrease in NANCi response in cotton rat airways in vitro. This disruption of the neural control of airways may lead to the development of altered airway function.

2003 ◽  
Vol 77 (24) ◽  
pp. 13156-13160 ◽  
Author(s):  
Gregory A. Prince ◽  
James J. Mond ◽  
David D. Porter ◽  
Kevin C. Yim ◽  
Steve J. Lan ◽  
...  

ABSTRACT CpG oligodeoxynucleotides (ODN) were identified that stimulated immunoglobulin production and cell proliferation in cotton rat cells in vitro. Three of these ODN were used as a mucosal adjuvant in the noses of cotton rats immunized via this route with respiratory syncytial virus fusion (F) protein. The CpG ODN markedly increased the cotton rat humoral neutralizing-antibody response to respiratory syncytial virus. Such immunized animals had a marked reduction in the production of infectious virus after a live-virus challenge. Animals immunized with the combination of F protein and CpG developed enhanced pulmonary pathology consisting of alveolitis and interstitial pneumonitis after a live-virus challenge. Similar enhanced disease has been seen in cotton rats and children immunized with formalin-inactivated respiratory syncytial virus.


2001 ◽  
Vol 75 (23) ◽  
pp. 11328-11335 ◽  
Author(s):  
Roderick S. Tang ◽  
Nick Nguyen ◽  
Xing Cheng ◽  
Hong Jin

ABSTRACT The M2-1 protein of human respiratory syncytial virus (hRSV) promotes processive RNA synthesis and readthrough at RSV gene junctions. It contains four highly conserved cysteines, three of which are located in the Cys3-His1motif at the N terminus of M2-1. Each of the four cysteines, at positions 7, 15, 21, and 96, in the M2-1 protein of hRSV A2 strain was individually replaced by glycines. When tested in an RSV minigenome replicon system using β-galactosidase as a reporter gene, C7G, C15G, and C21G located in the Cys3-His1motif showed a significant reduction in processive RNA synthesis compared to wild-type (wt) M2-1. C96G, which lies outside the Cys3-His1 motif, was fully functional in supporting processive RNA synthesis in vitro. Each of these cysteine substitutions was introduced into an infectious antigenomic cDNA clone derived from hRSV A2 strain. Except for C96G, which resulted in a viable virus, no viruses were recovered with mutations in the Cys3-His1 motif. This indicates that the Cys3-His1 motif is critical for M2-1 function and for RSV replication. The functional requirement of the C terminus of the M2-1 protein was examined by engineering premature stop codons that caused truncations of 17, 46, or 67 amino acids from the C terminus. A deletion of 46 or 67 amino acids abolished the synthesis of full-length β-galactosidase mRNA and did not result in the recovery of viable viruses. However, a deletion of 17 amino acids from the C terminus of M2-1 reduced processive RNA synthesis in vitro and was well tolerated by RSV. Relocation of the M2-1 termination codon upstream of the M2-2 initiation codons did not significantly affect the expression of the M2-2 protein. Both rA2-Tr17 and rA2-C96G did not replicate as efficiently as wt rA2 in HEp-2 cells and was restricted in replication in the respiratory tracts of cotton rats.


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


2006 ◽  
Vol 80 (23) ◽  
pp. 11651-11657 ◽  
Author(s):  
Xiaodong Zhao ◽  
Enmei Liu ◽  
Fu-Ping Chen ◽  
Wayne M. Sullender

ABSTRACT Respiratory syncytial virus (RSV) is the only infectious disease for which a monoclonal antibody (MAb) is used in humans. Palivizumab (PZ) is a humanized murine MAb to the F protein of RSV. PZ-resistant viruses appear after in vitro and in vivo growth of RSV in the presence of PZ. Fitness for replication could be a determinant of the likelihood of dissemination of resistant viruses. We assessed the fitness of two PZ-resistant viruses (F212 and MP4). F212 grew less well in cell culture than the parent A2 virus and was predicted to be less fit than A2. Equal amounts of F212 and A2 were mixed and passaged in cell culture. F212 disappeared from the viral population, indicating it was less fit than the A2 virus. The MP4 virus grew as well as A2 in culture and in cotton rats. A2/MP4 virus input ratios of 1:1, 10:1, 100:1, and 1,000:1 were compared in competitive replication. For all input ratios except 1,000:1, the MP4 virus became dominant, supplanting the A2 virus. The MP4 virus also dominated the A2 virus during growth in cotton rats. Thus, the mutant MP4 virus was more fit than A2 virus in both in vitro and in vivo competitive replication. Whether this fitness difference was due to the identified nucleotide substitutions in the F gene or to mutations elsewhere in the genome is unknown. Understanding the mechanisms by which mutant virus fitness increased or decreased could prove useful for consideration in attenuated vaccine design efforts.


2020 ◽  
Vol 101 (10) ◽  
pp. 1056-1068
Author(s):  
Linda J. Rennick ◽  
Sham Nambulli ◽  
Ken Lemon ◽  
Grace Y. Olinger ◽  
Nicholas A. Crossland ◽  
...  

Human respiratory syncytial virus (HRSV) is an important respiratory pathogen causing a spectrum of illness, from common cold-like symptoms, to bronchiolitis and pneumonia requiring hospitalization in infants, the immunocompromised and the elderly. HRSV exists as two antigenic subtypes, A and B, which typically cycle biannually in separate seasons. There are many unresolved questions in HRSV biology regarding the interactions and interplay of the two subtypes. Therefore, we generated a reverse genetics system for a subtype A HRSV from the 2011 season (A11) to complement our existing subtype B reverse genetics system. We obtained the sequence (HRSVA11) directly from an unpassaged clinical sample and generated the recombinant (r) HRSVA11. A version of the virus expressing enhanced green fluorescent protein (EGFP) from an additional transcription unit in the fifth (5) position of the genome, rHRSVA11EGFP(5), was also generated. rHRSVA11 and rHRSVA11EGFP(5) grew comparably in cell culture. To facilitate animal co-infection studies, we derivatized our subtype B clinical isolate using reverse genetics toexpress the red fluorescent protein (dTom)-expressing rHRSVB05dTom(5). These viruses were then used to study simultaneous in vivo co-infection of the respiratory tract. Following intranasal infection, both rHRSVA11EGFP(5) and rHRSVB05dTom(5) infected cotton rats targeting the same cell populations and demonstrating that co-infection occurs in vivo. The implications of this finding on viral evolution are important since it shows that inter-subtype cooperativity and/or competition is feasible in vivo during the natural course of the infection.


2021 ◽  
Author(s):  
Jorge C.G. Blanco ◽  
Lori McGinnes-Cullen ◽  
Arash Kamali ◽  
Fatoumata Sylla ◽  
Marina Boukhavalova ◽  
...  

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life.  In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge (Blanco, et al Journal of Virology 93: e00914-19, https://doi.org/10.1128/JVI.00914-19).  Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization.  We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth.   However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age.  This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy.  The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.


2017 ◽  
Vol 30 (8) ◽  
pp. 576-581 ◽  
Author(s):  
Vesla I. Kullaya ◽  
Quirijn de Mast ◽  
Andre van der Ven ◽  
Hicham elMoussaoui ◽  
Gibson Kibiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document