Soluble and insoluble fibronectin increases alveolar epithelial wound healing in vitro

1996 ◽  
Vol 271 (5) ◽  
pp. L844-L853 ◽  
Author(s):  
C. Garat ◽  
F. Kheradmand ◽  
K. H. Albertine ◽  
H. G. Folkesson ◽  
M. A. Matthay

Adhesive interactions between cells and extracellular matrix proteins are important in cell attachment, migration, and proliferation. The present work defines the role of fibronectin (soluble and insoluble) compared with type I and type IV collagen on in vitro alveolar epithelial wound healing. Repeated video microscopy experiments demonstrated that the half-time of wound closure was decreased in the presence of soluble fibronectin (6.6 +/- 2.1 vs. 17.4 +/- 0.8 h in serum-free medium, P < 0.05). Video microscopy, electron microscopy, and vinculin distribution demonstrated the contribution of two main events during the repair process: the migration of epithelial cell sheets and the spreading of the cells. During the wound healing, the internuclear distance between two adjacent cells at the migrating edge of the wound was significantly increased 10 h after wounding in the presence of soluble fibronectin (67 +/- 3.0 vs. 45 +/- 1.5 microns in serum-free medium, P < 0.05), indicating that cell spreading is involved as part of the mechanism for wound closure. Compared with type I and type IV collagen, insoluble fibronectin was the most potent stimulus for alveolar type II cell motility and wound healing in the absence of other serum factors. These results demonstrate that alveolar epithelial wound healing can be modulated in vitro by the composition of the extracellular matrix, an effect that may be mediated by changes in cell shape.

1981 ◽  
Vol 89 (2) ◽  
pp. 276-283 ◽  
Author(s):  
P Ekblom ◽  
E Lehtonen ◽  
L Saxén ◽  
R Timpl

Conversion of the nephrogenic mesenchyme into epithelial tubules requires an inductive stimulus from the ureter bud. Here we show with immunofluorescence techniques that the undifferentiated mesenchyme before induction expresses uniformly type I and type III collagens. Induction both in vivo and in vitro leads to a loss of these proteins and to the appearance of basement membrane components including type IV collagen. This change correlates both spatially and temporally with the determination of the mesenchyme and precedes and morphological events. During morphogenesis, type IV collagen concentrates at the borders of the developing tubular structures where, by electron microscopy, a thin, often discontinuous basal lamina was seen to cover the first pretubular cell aggregates. Subsequently, the differentiating tubules were surrounded by a well-developed basal lamina. No loss of the interstitial collagens was seen in the metanephric mesenchyme when brought into contact with noninducing tissues or when cultured alone. Similar observations were made with nonnephrogenic mesenchyme (salivary, lung) when exposed to various heterotypic tissues known to induce tubules in the nephrogenic mesenchyme. The sequential shift in the composition of the extracellular matrix from an interstitial, mesenchymal type to a differentiated, epithelial type is so far the first detectable response of the nephrogenic mesenchyme to the tubule-inducing signal.


2010 ◽  
Vol 7 (49) ◽  
pp. 1157-1170 ◽  
Author(s):  
Sean H. J. Kim ◽  
Michael A. Matthay ◽  
Keith Mostov ◽  
C. Anthony Hunt

The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro , we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing ‘cells’ a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated ‘cell’ migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.


2014 ◽  
Vol 191 (4S) ◽  
Author(s):  
Laurence A. Levine ◽  
Tom M. Schmid ◽  
Susan G. Emeigh Hart ◽  
Thomas Tittelbach ◽  
Michael P. McLane ◽  
...  

2000 ◽  
Vol 113 (5) ◽  
pp. 859-868 ◽  
Author(s):  
A. Furuyama ◽  
K. Mochitate

We found that immortalized alveolar type II epithelial cells (SV40-T2 cells) that were cultured on dense fibrillar collagen supplemented with Matrigel gel formed a thin and continuous lamina densa beneath them. Immunohistochemical analysis of laminin-1, type IV collagen, entactin (nidogen) and perlecan in the culture indicated that all these components were integrated into a sheet structure of basement membrane beneath the cells. Analysis of the temporal and spatial distribution of the basement membrane macromolecules revealed that the initial deposits of laminin-1 and entactin were significantly greater in area in the presence of Matrigel. These globular deposits and the coarse mesh of basement membrane macromolecules developed into a flat membranous basement membrane. In the absence of Matrigel, the SV40-T2 cells failed to form a continuous lamina densa, and the deposits stayed in the coarse mesh. The major biotinylated Matrigel components that were integrated into the basement membrane were laminin-1 and entactin. Furthermore, SV40-T2 cells supplemented with exogenous laminin-1 alone as well as laminin-1 contaminated with entactin formed a continuous lamina densa. These results indicate that the laminin-1 and entactin supplied from the Matrigel were incorporated into a basement membrane beneath the SV40-T2 cells, and contributed to the formation of basement membrane. Therefore, we concluded that the alveolar epithelial cells synthesize laminin-1, entactin, type IV collagen, and perlecan, but that they also needed to assemble exogenous laminin-1 into the basement membrane to complete its formation in vitro.


2019 ◽  
Author(s):  
Ozgun Melike Gedar Totuk ◽  
Erdost YILDIZ ◽  
Adriano MOLLICA ◽  
Kerem KABADAYI ◽  
Afsun SAHIN

Abstract Background Analgesic drugs including nonselective opioids and non-steroidal anti-inflammatory drugs should be used with great precautions to relieve the pain after physical damage of the corneal epithelium, because of their unfavorable effects on wound healing process. Biphalin, a synthetic opioid peptide, which has been demonstrated to possesses a strong analgesic effect on rodents. The purpose of this study is to investigate the effects of biphalin on human corneal epithelium wound healing. Methods Immortalized human corneal epithelial cell (HCEC) culture was used to test the effects of biphalin on wound healing. The toxicity of biphalin in various concentrations was measured with MTT assay. The effect of 1 µM and 10 µM biphalin were tested on wound closure at in vitro scratch assay of HCECs, and for cell migration and proliferation separately. Naloxone, a non-selective competitive antagonist of opioid receptor, was also used to inhibit the effects of biphalin in all experiments. Results Biphalin did not cause any toxic effect on HCECs in concentrations lower than 100 µM at various incubation time points. Biphalin increased wound closure process significantly at 1 µM concentration at in vitro scratch assay of HCECs (p < 0.05); also increased migration of HCECs significantly (p < 0.01). There was no significant difference between biphalin and control groups of HCECs at Ki67 proliferation assay. Conclusion Biphalin, a synthetic opioid peptide, has a potential role as a novel topical analgesic agent that promotes corneal epithelial wound healing.


1985 ◽  
Vol 33 (7) ◽  
pp. 655-664 ◽  
Author(s):  
S Berrih ◽  
W Savino ◽  
S Cohen

The immunohistochemical detection of elements of the human thymic extracellular matrix in situ and in vitro is described. In the normal thymus, the intracapsular and intraseptal fibers were strongly labeled by anti-type I collagen antiserum. Basement membranes bordering the capsule, septae, and perivascular spaces were intensely stained by anti-type IV collagen, anti-fibronectin, and anti-laminin sera. In hyperplastic myasthenia gravis thymuses, the major changes consisted of discontinuities of the basement membrane adjacent to clusters of epithelial (keratin-containing) cells, among which an unusual connective framework (densely labeled by all the antisera) was observed. In vitro, most epithelial cells were strongly labeled by antifibronectin serum and to a lesser extent by the anti-type IV collagen and anti-laminin sera. In addition, fibronectin, laminin, and type IV collagen were detected in the intercellular spaces bordering the epithelial cells in culture. Results show that thymic epithelial cells participate in the synthesis of extracellular matrix elements, which as a result of their localization and influence on epithelial cell growth, should be regarded as constitutive components of the thymic microenvironment.


2020 ◽  
Author(s):  
Ozgun Melike Gedar Totuk ◽  
Erdost YILDIZ ◽  
Adriano MOLLICA ◽  
Kerem KABADAYI ◽  
Afsun SAHIN

Abstract Background: Analgesic drugs, including nonselective opioids and non-steroidal anti-inflammatory drugs, should be used with great precautions to relieve pain after physical damage of the corneal epithelium because of their unfavorable effects on the wound-healing process. Biphalin is a synthetic opioid peptide that has been demonstrated to possesses a strong analgesic effect on rodents. The purpose of this study is to investigate the effects of biphalin on human corneal epithelium wound healing.Methods: An immortalized human corneal epithelial cell (HCEC) culture was used to test the effects of biphalin on wound healing. The toxicity of biphalin in various concentrations was measured with the MTT assay. The effect of 1 µM and 10 µM biphalin were tested on wound closure in an in vitro scratch assay of HCECs and for cell migration and proliferation separately. Naloxone, a non-selective competitive antagonist of opioid receptors, was also used to inhibit the effects of biphalin in all experiments.Results: Biphalin did not cause any toxic effect on HCECs in concentrations lower than 100 µM at various incubation time points. Biphalin increased the wound closure process significantly at 1 µM concentration in an in vitro scratch assay of HCECs (p < 0.05). It also increased the migration of HCECs significantly (p < 0.01). There was no significant difference between biphalin and control groups of HCECs in the Ki67 proliferation assay.Conclusion: Biphalin, a synthetic opioid peptide, has a potential role as a novel topical analgesic agent that promotes corneal epithelial wound healing. This role should be evaluated in further in vivo and clinical studies.


1985 ◽  
Vol 73 (1) ◽  
pp. 19-32
Author(s):  
W.C. Young ◽  
I.M. Herman

We utilized fluorescence microscopy and affinity-purified antibodies to probe the form and function of cytoplasmic actin in endothelial cells (EC) recovering from injury and grown on extracellular matrices in vitro. Bovine aortic EC were seeded onto glass microscope coverslips that had been coated with either BSA, fibronectin, type I and III (interstitial) collagens, type IV (basement membrane) collagen or gelatin. After EC that had been grown on glass, glass-BSA or extracellular matrix-coated coverslips reached confluence, a 300–400 micron zone of cells was mechanically removed to stimulate EC migration and proliferation. Post-injury EC movements were monitored with time-lapse, phase-contrast videomicrography before fixation for actin localization with fluorescence microscopy using affinity-purified antibodies. We found that the number of stress fibres within EC was inversely proportional to the rate of movement; and, the rates of movement for EC grown on glass or glass-BSA were approximately eight times faster than EC grown on gelatin or type IV collagen (X velocity = 0.5 micron/min versus 0.06 micron/min). EC movements on fibronectin and interstitial collagens were similar (X velocity = 0.2 micron/min). These results suggest that extracellular matrix molecules modulate EC stress fibre expression, thereby producing alterations in the cytoskeleton and the resultant EC movements that follow injury in vitro. Moreover, the induction of stress fibres in the presence of basement membrane (type IV) collagen may explain the failure of aortic EC to migrate and repopulate wounded regions of intima during atherogenesis in vivo.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Sign in / Sign up

Export Citation Format

Share Document