scholarly journals Cellular disposition of transported polyamines in hypoxic rat lung and pulmonary arteries

2000 ◽  
Vol 278 (3) ◽  
pp. L610-L617 ◽  
Author(s):  
Pavel Babal ◽  
S. Machelle Manuel ◽  
Jack W. Olson ◽  
Mark N. Gillespie

The polyamines putrescine, spermidine (SPD), and spermine are a family of low-molecular-weight organic cations essential for cell growth and differentiation and other aspects of signal transduction. Hypoxic pulmonary vascular remodeling is accompanied by depressed lung polyamine synthesis and markedly augmented polyamine uptake. Cell types in which hypoxia induces polyamine transport in intact lung have not been delineated. Accordingly, rat lung and rat main pulmonary arterial explants were incubated with [14C]SPD in either normoxic (21% O2) or hypoxic (2% O2) environments for 24 h. Autoradiographic evaluation confirmed previous studies showing that, in normoxia, alveolar epithelial cells are dominant sites of polyamine uptake. In contrast, hypoxia was accompanied by prominent localization of [14C]SPD in conduit, muscularized, and partially muscularized pulmonary arteries, which was not evident in normoxic lung tissue. Hypoxic main pulmonary arterial explants also exhibited substantial increases in [14C]SPD uptake relative to control explants, and autoradiography revealed that enhanced uptake was most evident in the medial layer. Main pulmonary arterial explants denuded of endothelium failed to increase polyamine transport in hypoxia. Conversely, medium conditioned by endothelial cells cultured in hypoxic, but not in normoxic, environments enabled hypoxic transport induction in denuded arterial explants. These findings in arterial explants were recapitulated in rat cultured main pulmonary artery cells, including the enhancing effect of a soluble endothelium-derived factor(s) on hypoxic induction of [14C]SPD uptake in smooth muscle cells. Viewed collectively, these results show in intact lung tissue that hypoxia enhances polyamine transport in pulmonary artery smooth muscle by a mechanism requiring elaboration of an unknown factor(s) from endothelial cells.

2006 ◽  
Vol 290 (2) ◽  
pp. L367-L374 ◽  
Author(s):  
Ioana R. Preston ◽  
Nicholas S. Hill ◽  
Rod R. Warburton ◽  
Barry L. Fanburg

The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10−5 μM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.


1995 ◽  
Vol 268 (3) ◽  
pp. L509-L518 ◽  
Author(s):  
M. J. Griffiths ◽  
S. Liu ◽  
N. P. Curzen ◽  
M. Messent ◽  
T. W. Evans

Our aim was to demonstrate increased NO activity from inducible NO synthase (iNOS) in pulmonary arteries (PA) from rats treated with endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip]. LPS treatment diminished the contractile response of PA to potassium chloride (KCl) and phenylephrine (PE) and increased levels of guanosine 3',5'-cyclic monophosphate (cGMP) in endothelium-denuded vessels. Both the NO synthase (NOS) antagonists NG-monomethyl-L-arginine (L-NMMA; nonselective) and aminoguanidine (selective for iNOS) enhanced PE-induced contraction in endothelium-denuded vessels from LPS-treated rats. Furthermore, L-NMMA-induced contraction of endothelium-denuded vessels from LPS-treated rats was stereospecifically antagonized by L-arginine and associated with decreased cGMP levels. These data suggest that NO is produced in increased amounts from PA smooth muscle after LPS treatment. LPS treatment caused increased expression of mRNA for iNOS in PA. This effect of LPS was attenuated by pretreatment with dexamethasone, suggesting that induction of NOS in PA smooth muscle underlies the increased NO activity associated with LPS administration.


1993 ◽  
Vol 264 (2) ◽  
pp. L141-L145 ◽  
Author(s):  
H. A. Omar ◽  
K. M. Mohazzab ◽  
M. P. Mortelliti ◽  
M. S. Wolin

Lactate was found to produce a relaxation of isolated endothelium-removed calf pulmonary arteries precontracted with 20–30 mM K+. Examination of the mechanism of this response indicates that it appears to be O2 dependent and mediated via guanosine 3',5'-cyclic monophosphate (cGMP), since it is reduced by hypoxia (N2 atmosphere, PO2 = 8-10 Torr) and because the relaxation was both eliminated by inhibition of soluble guanylate cyclase activation with methylene blue and enhanced by an antagonist of cGMP-selective phosphodiesterases (M & B 22948). Relaxation to lactate is not mediated via prostaglandin formation or arginine-derived nitric oxide, since indomethacin or nitro-L-arginine, respectively, did not alter the response. Lucigenin-elicited chemiluminescence, a potential detector of superoxide anion, was significantly increased by lactate only after inhibition of Cu-Zn-superoxide dismutase (via pretreatment with diethyldithiocarbamate). Pyruvate (5 mM) produced only minimal relaxation and did not significantly increase chemiluminescence. In the homogenate fraction of the arterial smooth muscle, NAD plus lactate or NADH was required to observe increased chemiluminescence. The calf pulmonary arterial smooth muscle contraction to hypoxia and relaxation to posthypoxic reoxygenation was observed to be increased by lactate, associated with a reduced level tone generation under O2 but not N2 atmosphere. Thus lactate, but not pyruvate, appears to cause a cGMP-mediated relaxation in the calf pulmonary artery through an increased intracellular H2O2 generation via the NADH-dependent production of superoxide anion, and activation of this relaxing mechanism modulates O2-elicited tone responses.


2002 ◽  
Vol 282 (4) ◽  
pp. L840-L846 ◽  
Author(s):  
Pavel Babal ◽  
Mykhaylo Ruchko ◽  
Kathryn Ault-Ziel ◽  
Lauren Cronenberg ◽  
Jack W. Olson ◽  
...  

In rat lung and cultured lung vascular cells, hypoxia decreases ornithine decarboxylase (ODC) activity and increases polyamine import. In this study, we used rat cultured pulmonary artery endothelial cells to explore the mechanism of hypoxia-induced reduction in ODC activity and determined whether this event was functionally related to the increase in polyamine import. Two strategies known to suppress proteasome-mediated ODC degradation, lactacystin treatment and use of cells expressing a truncated ODC incapable of interacting with the proteasome, prevented the hypoxia-induced decrease in ODC activity. Interestingly, though, cellular abundance of the 24-kDa antizyme, a known physiological accelerator of ODC degradation, was not increased by hypoxia. These observations suggest that an antizyme-independent ODC degradation pathway contributes to hypoxia-induced reductions of ODC activity. When reductions in ODC activity in hypoxia were prevented by the proteasome inhibitor strategies, hypoxia failed to increase polyamine transport. The induction of polyamine transport in hypoxic pulmonary artery endothelial cells thus seems to require decreased ODC activity as an initiating event.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Ramadhiani ◽  
K Ikeda ◽  
K Miyagawa ◽  
G.R.T Ryanto ◽  
N Tamada ◽  
...  

Abstract Introduction Pulmonary arterial hypertension (PAH) is characterized by remodelling and stenosis of the pulmonary arteries, ultimately leading to the right heart failure and death. Endothelial cell (EC) dysfunction is thought to play a central role in the pathogenesis of PAH by mediating the structural changes in pulmonary vasculatures. Various stresses promote premature senescence in EC, which may modify vascular disorders; however, the role of EC senescence in the development of PAH remains poorly understood. Purpose We aimed at investigating the potential role of EC premature senescence in the development of PAH. Methods We recently generated EC-specific progeroid mice in which ECs specifically undergo premature senescence by overexpressing the dominant-negative form of telomere repeat-binding factor 2 (published in Nat Commun 2020). These EC-specific progeroid mice were exposed to hypoxia (10% O2 for three weeks) to induce pulmonary hypertension. Also, we prepared premature senescent ECs using human pulmonary artery ECs (hPAECs) and explored their interaction with human pulmonary artery smooth muscle cells (hPASMCs) in two different conditions; direct and indirect interactions. For indirect coculture, hPASMCs were seeded onto the culture insert, while hPAECs were plated on the culture plate, and they were cocultured in the same well and medium so that secreted factors derived from senescent ECs could access to SMCs through the insert pores. For direct coculture, hPAECs were seeded onto the bottom side of the insert, while hPASMCs were cultured on the top side of the same insert, so that cell-to-cell contact could be made through the pores. Results After chronic hypoxia exposure, the EC-specific progeroid mice showed higher right ventricular systolic pressure and increased right ventricular mass as compared to wild-type (WT) mice, indicating exacerbated pulmonary hypertension. Histological analysis of the lung revealed a significantly enhanced muscularization in the small pulmonary arteries in EC-specific progeroid mice compared to WT mice. Mechanistically, we identified that direct coculture with premature senescent hPAECs enhanced proliferation and migration in hPASMCs, while no such effects were detected in indirect coculture condition. Conclusion To our knowledge, this is the first report that reveals a crucial role of EC premature senescence in the development of PAH. Our in vitro studies suggest that contact-mediated interaction between premature senescent ECs and SMCs is critically involved in its underlying mechanism. Therefore, EC premature senescence is a novel attractive pharmacotherapeutic target for the treatment of PAH. Funding Acknowledgement Type of funding source: None


1982 ◽  
Vol 242 (5) ◽  
pp. H900-H906 ◽  
Author(s):  
H. Suzuki ◽  
B. M. Twarog

Electrical properties of the membrane of smooth muscle cells in the rat main pulmonary artery (MPA) and a small pulmonary artery (SPA) were compared. MPA and SPA differed in several important respects, suggesting characteristic quantitative and qualitative differences in membrane properties. 1) Resting membrane potentials were similar in both (MPA 52.2 +/- 1.3 mV; SPA 51.5 +/- 1.7 mV). The cells displayed no spontaneous electrical activity. The muscle layers in both MPA and SPA showed cablelike properties; a graded local response to outward current pulses was observed, but no action potentials were evoked. 2) Tetraethylammonium chloride (TEA, 1-5 mM) depolarized, increased membrane resistance, and suppressed rectification in MPA. TEA strongly depolarized SPA and contraction ensued. 3) The maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] was 48 mV in MPA and 47 mV in SPA. In K+-free solution gradual depolarization was observed in SPA, but the membrane potential in MPA was not modified. Restoration of K+-containing solution produced equivalent hyperpolarization in both tissues, indicating a similar degree of stimulation of electrogenic Na+-K+ pumping. 4) A Na+-deficient solution did not affect the membrane potential in MPA but depolarized SPA.


1982 ◽  
Vol 243 (5) ◽  
pp. H732-H737
Author(s):  
D. K. Rorie

The importance of endothelial cells in the removal of norepinephrine from synaptic clefts in dog pulmonary artery was studied. Strips of artery cut helically were denuded of endothelium by gently stroking the intimal surface with a wooden applicator stick or were studied with endothelium intact. All strips were prelabeled in L-[3H]norepinephrine (2 X 10(-7) M) and mounted for superfusion. Superfusate was collected continuously before, during, and after electrical stimulation (10 V, 2 ms, 2 Hz). Measurements were made of the amounts of [3H]norepinephrine and its metabolites in superfusate and in tissue. These studies have established that 3,4-dihydroxyphenylglycol is of neuronal origin and O-methylated metabolites are of extraneuronal origin. The formation of extraneuronal metabolites in smooth muscle and endothelium was examined by either blocking uptake of norepinephrine into each, in turn, or by combining blockade of uptakes with the elimination of access of norepinephrine to endothelial tissue by completely removing it. Electrical stimulation elicited the overflow of large amounts of norepinephrine, 3,4-dihydroxyphenylglycol, and O-methylated metabolites into superfusate in strips with intact endothelium; in strips denuded of endothelium there were striking decreases in the amounts of O-methylated metabolites produced. These studies show that pulmonary arterial endothelium participates in the extraneuronal metabolism of norepinephrine released by sympathetic nerve stimulation.


Cardiology ◽  
2017 ◽  
Vol 137 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Lin Zhao ◽  
Hui Luo ◽  
Xiaohui Li ◽  
Tangzhiming Li ◽  
Jingni He ◽  
...  

Background: The overproliferation of pulmonary vascular cells is noted in pulmonary hypertension. The role of exosomes from pulmonary artery endothelial cells (PAEC) in the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMC) remains unclear. Methods: Exosomes were isolated and purified from the culture medium of PAEC using a commercial kit. Lipopolysaccharide (LPS), hypoxia, and hydrogen peroxide were utilized to induce PAEC injury. Coculture of PAEC and PASMC was conducted using Transwell plates, and GW4869 was applied to inhibit exosome release. The proliferation and apoptosis level of PASMC was assayed by MTT assay, apoptosis staining, and cleaved caspase-3 immunoblotting. Plasma exosomes were isolated by differential ultracentrifugation. Results: LPS or hypoxia enhance exosome release from PAEC. Release of PAEC-derived exosomes positively correlates with LPS concentration. The coculture of LPS-disposed PAEC with PASMC leads to overproliferation and apoptosis resistance in PASMC, and the exosome inhibitor GW4869 can partly cancel out this effect. Exosomes derived from PAEC could be internalized into PASMC, and thus promote proliferation and induce apoptosis resistance in PASMC. Idiopathic pulmonary arterial hypertension patients exhibit a higher circulation level of endothelium-derived exosomes. Conclusions: Inflammation and hypoxia could induce PAEC to release exosomes. PAEC- derived exosomes are involved in overproliferation and apoptosis resistance in PASMC, by which they may contribute to the pathogenesis of pulmonary hypertension.


Sign in / Sign up

Export Citation Format

Share Document