scholarly journals Vanilloid, purinergic, and CCK receptors activate glutamate release on single neurons of the nucleus tractus solitarius centralis

2011 ◽  
Vol 301 (2) ◽  
pp. R394-R401 ◽  
Author(s):  
Kirsteen N. Browning ◽  
ShuXia Wan ◽  
Vander Baptista ◽  
R. Alberto Travagli

Baroreceptor inputs to nucleus of the tractus solitarius medialis (mNTS) neurons can be differentiated, among other features, by their response to vanilloid or purinergic agonists, active only on C- or A-fibers, respectively. A major aim of this study was to examine whether neurons of NTS centralis (cNTS), a subnucleus dominated by esophageal inputs, exhibit a similar dichotomy. Since it has been suggested that cholecystokinin (CCK), exerts its gastrointestinal (GI)-related effects via paracrine activation of vagal afferent C-fibers, we tested whether CCK-sensitive fibers impinging upon cNTS neurons are responsive to vanilloid but not purinergic agonists. Using whole cell patch-clamp recordings from cNTS, we recorded miniature excitatory postsynaptic currents (mEPSCs) to test the effects of the vanilloid agonist capsaicin, the purinergic agonist α,β-methylene-ATP (α,β-Met-ATP), and/or CCK-octapeptide (CCK-8s). α,β-Met-ATP, capsaicin; and CCK-8s increased EPSC frequency in 37, 71, and 46% of cNTS neurons, respectively. Approximately 30% of cNTS neurons were responsive to both CCK-8s and α,β-Met-ATP, to CCK-8s and capsaicin, or to α,β-Met-ATP and capsaicin, while 32% of neurons were responsive to all three agonists. All neurons responding to either α,β-Met-ATP or CCK-8s were also responsive to capsaicin. Perivagal capsaicin, which is supposed to induce a selective degeneration of C-fibers, decreased the number of cNTS neurons responding to capsaicin or CCK-8s but not those responding to α,β-Met-ATP. In summary, GI inputs to cNTS neurons cannot be distinguished on the basis of their selective responses to α,β-Met-ATP or capsaicin. Our data also indicate that CCK-8s increases glutamate release from purinergic and vanilloid responsive fibers impinging on cNTS neurons.

2007 ◽  
Vol 292 (3) ◽  
pp. R1092-R1100 ◽  
Author(s):  
V. Baptista ◽  
K. N. Browning ◽  
R. A. Travagli

We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 μg/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s' effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by ∼50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved.


2016 ◽  
pp. 165-169 ◽  
Author(s):  
J.-J. ZHANG ◽  
X.-D. LIU ◽  
L.-C. YU

Acute morphine exposure induces antinociceptive activity, but the underlying mechanisms in the central nervous system are unclear. Using whole-cell patch clamp recordings, we explore the role of morphine in the modulation of excitatory synaptic transmission in lateral amygdala neurons of rats. The results demonstrate that perfusion of 10 μM of morphine to the lateral amygdala inhibits the discharge frequency significantly. We further find that there are no significant influences of morphine on the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Interestingly, morphine shows no marked influence on the evoked excitatory postsynaptic currents (eEPSCs) in the lateral amygdala neurons. These results indicate that acute morphine treatment plays an important role in the modulation on the excitatory synaptic transmission in lateral amygdala neurons of rats.


2008 ◽  
Vol 108 (4) ◽  
pp. 675-683 ◽  
Author(s):  
James H. Peters ◽  
Stuart J. McDougall ◽  
David Mendelowitz ◽  
Dennis R. Koop ◽  
Michael C. Andresen

Background Isoflurane anesthesia produces cardiovascular and respiratory depression, although the specific mechanisms are not fully understood. Cranial visceral afferents, which innervate the heart and lungs, synapse centrally onto neurons within the medial portion of the nucleus tractus solitarius (NTS). Isoflurane modulation of afferent to NTS synaptic communication may underlie compromised cardiorespiratory reflex function. Methods Adult rat hindbrain slice preparations containing the solitary tract (ST) and NTS were used. Shocks to ST afferents evoked excitatory postsynaptic currents with low-variability (SEM <200 mus) latencies identifying neurons as second order. ST-evoked and miniature excitatory postsynaptic currents as well as miniature inhibitory postsynaptic currents were measured during isoflurane exposure. Perfusion bath samples were taken in each experiment to measure isoflurane concentrations by gas chromatography-mass spectrometry. Results Isoflurane dose-dependently increased the decay-time constant of miniature inhibitory postsynaptic currents. At greater than 300 mum isoflurane, the amplitude of miniature inhibitory postsynaptic currents was decreased, but the frequency of events remained unaffected, whereas at equivalent isoflurane concentrations, the frequency of miniature excitatory postsynaptic currents was decreased. ST-evoked excitatory postsynaptic current amplitudes decreased without altering event kinetics. Isoflurane at greater than 300 mum increased the latency to onset and rate of synaptic failures of ST-evoked excitatory postsynaptic currents. Conclusions In second-order NTS neurons, isoflurane enhances phasic inhibitory transmission via postsynaptic gamma-aminobutyric acid type A receptors while suppressing excitatory transmission through presynaptic mechanisms. These results suggest that isoflurane acts through multiple distinct mechanisms to inhibit neurotransmission within the NTS, which would underlie suppression of homeostatic reflexes.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Runping Wang ◽  
Yongjun Lu ◽  
Michael Z Cicha ◽  
Kamal Rahmouni ◽  
Mark W Chapleau ◽  
...  

High fat diet inhibits the cholecystokinin (CCK) induced satiety signal in vagal afferents, which may contribute to the associated increased food intake. We hypothesized that a defect of Ca 2+ -activated chloride channel (CaCC) in high fat (HFD) fed mice leads to the reduction of CCK responses in intestinal vagal afferent nodose neurons. By using the whole cell patch-clamp in cultured nodose ganglia neurons isolated from C57BL/6 mice, we found that CCK (10nM) induced large inward chloride (Cl - ) currents (36.0±11pA/pF) that were eliminated with the fast Ca 2+ chelator BAPTA (1.0±0.5pA/pF, n=7), and reduced significantly by the CaCC channel inhibitor niflumic acid (100 μM, 13.6±2.0pA/pF, p<0.05, n=8). The response to CCK in DiI-labeled proximal intestinal nodose neurons from obese mice fed a 60% HFD for 10 weeks was reduced significantly (6.1±2.9pA/pF, n=7, p<0.01) relative to control lean mice (24.8±4.9pA/pF, n=7). The underlying molecular mechanism of the reduced CCK response in mice fed a HFD did not involve altered expression of CCK receptors in nodose neurons. We found that the relative mRNA (qPCR) of CCK receptor B was not significantly changed (1.01±0.13 in control vs. 1.18±0.31 in HFD nodose ganglia, n=4, p>0.05) and the mRNA of CCK receptor A was even increased from 1.06±0.37 in control to 1.54±0.41 in HFD ganglia (n=4, p<0.05). In contrast, the CaCC channel mRNA (Ano I) was decreased to 0.61±0.09 relative to 1.01±0.20 (n=4, p<0.001), and Ano II mRNA was decreased to 0.31±0.07 relative to 1.02±0.22 (n=4, p<0.001) in nodose ganglia from HFD fed vs. control lean mice. Since the maximum current induced by a saturation level of ligand reflects the level of protein expressed on the cytoplasmic membrane, we tested the CaCC current induced by a high level of intracellular Ca 2+ (20μM). We found that the maximum current was smaller in DiI labeled intestinal nodose neurons from HFD fed mice (13.7±2.9 pA/pF vs. 26.9±3.6 pA/pF in control mice, n=10, p<0.05). Our results indicate that CCK-activated currents recorded from intestinal vagal afferent nodose neurons are reduced in mice fed a HFD, and are associated with reduced expression of a CCK-activated Ca 2+ -dependent Cl - channel. This mechanism may contribute significantly to HFD-induced suppression of the satiety reflex.


2006 ◽  
Vol 95 (3) ◽  
pp. 1537-1544 ◽  
Author(s):  
Yuchun Zhang ◽  
Ping Deng ◽  
Yan Li ◽  
Zao C. Xu

Spiny neurons in the neostriatum are highly vulnerable to ischemia. Enhancement of excitatory synaptic transmissions has been implicated in ischemia-induced excitotoxic neuronal death. Here we report that evoked excitatory postsynaptic currents in spiny neurons were potentiated after transient forebrain ischemia. The ischemia-induced potentiation in synaptic efficacy was associated with an enhancement of presynaptic release as demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and a decrease in the paired-pulse ratio. The amplitude of inward currents evoked by exogenous application of glutamate did not show significant changes after ischemia, suggesting that postsynaptic mechanism is not involved. The ischemia-induced increase in mEPSCs frequency was not affected by blockade of voltage-gated calcium channels, but it was eliminated in the absence of extracellular calcium. Bath application of ATP P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) significantly reduced mEPSC frequency in ischemic neurons but had no effects on the control ones. Furthermore, the inhibitory effect of PPADS on ischemic neurons was abolished in Ca2+-free external solution. These results indicate that excitatory synaptic transmissions in spiny neurons are potentiated after ischemia via presynaptic mechanisms. Activation of P2X receptors and the consequent Ca2+ influx might contribute to the ischemia-induced facilitation of glutamate release.


1996 ◽  
Vol 76 (5) ◽  
pp. 3159-3168 ◽  
Author(s):  
A. R. McQuiston ◽  
W. F. Colmers

1. Neuropeptide Y (NPY) inhibits synaptic excitation in hippocampal area CA3. We studied its site of action with the use of whole cell patch-clamp recordings from CA3 pyramidal cells of rat hippocampal slices in vitro. 2. Spontaneous excitatory postsynaptic currents (sEPSCs) were isolated with picrotoxin, to block gamma-aminobutyric acid-A receptors, whereas miniature excitatory postsynaptic currents (mEPSCs) were isolated by additionally treating the slice with tetrodotoxin (TTX) and/or Cd2+, sEPSCs and mEPSCs were eliminated by the excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) and DL-2-amino-5-phosphonovaleric acid (50 microM), and were thus solely attributable to glutamate release. 3. The interval and amplitude distributions of sEPSCS and (TTX-isolated) mEPSCS were analyzed. Either NPY or the rapidly reversible, Y2-receptor-selective agonist [6-aminohexanoic5-24] NPY, ([ahx5-24]NPY) sharply increased the inter-sEPSC intervals in 16 of 16 neurons tested. In 11 of these cells, these agonists also simultaneously shifted the sEPSC amplitude distribution to somewhat smaller amplitudes, whereas in the remaining 5 cells, no concurrent effect on amplitudes was observed. By contrast, in 15 separate neurons treated with 1 microM TTX, neither NPY nor [ahx5-24]NPY altered either mEPSC amplitude or interval distributions of the mEPSCs. 4. To directly compare the effects of Y2 receptor activation on sEPSC and mEPSC properties, we applied [ahx5-24]NPY to the same cell in the absence and presence of TTX (n = 7). sEPSC intervals were characteristically increased by the Y2 agonist in all cells; in six of seven cells the sEPSC distribution was also shifted to smaller amplitudes. TTX application reduced the mean amplitude of the synaptic events more than did [ahx5-24]NPY, while increasing their intervals. [ahx5-24]NPY had no effect in TTX. 5. NPY, acting on a Y2 receptor, inhibits impulse-dependent synaptic excitation of CA3 pyramidal cells of the rat hippocampus by an entirely presynaptic action.


2000 ◽  
Vol 83 (5) ◽  
pp. 2616-2625 ◽  
Author(s):  
Zhenhui Li ◽  
Glenn I. Hatton

Whole cell patch-clamp recordings were obtained from supraoptic neurons to investigate the effects of histamine on excitatory postsynaptic currents evoked by electrical stimulation of areas around the posterior supraoptic nucleus. When cells were voltage-clamped at −70 mV, evoked excitatory postsynaptic currents had amplitudes of 88.4 ± 9.6 pA and durations of 41.1 ± 3.0 ms (mean ± SE; n = 43). With twin stimulus pulses (20 Hz) used, paired-pulse facilitation ratios were 1.93 ± 0.12. Bath application of 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX) abolished synaptic currents. Histamine at concentrations ∼0.1–10 μM reversibly suppressed excitatory postsynaptic currents in all supraoptic neurons tested. Within 2 min after application of (10 μM) histamine, current amplitudes and durations decreased by 61.5 and 31.0%, respectively, with little change in the paired-pulse facilitation ratio. Dimaprit or imetit (H2 or H3 receptor agonists) did not reduce synaptic currents, whereas pyrilamine (H1 receptor antagonist) blocked histamine-induced suppression of synaptic currents. When patch electrodes containing guanosine 5′- O-(2-thiodiphosphate) (GDP-β-S) were used to record cells, histamine still suppressed current amplitudes by 49.1% and durations by 41.9%. Similarly, intracellular diffusion of bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid (BAPTA) and H7 did not abolish histamine-induced suppression of synaptic currents, either. Bath perifusion of 8-bromo-quanosine 3′,5′-cyclic monophosphate reduced current amplitudes by 32.3% and durations by 27.9%. After bath perfusion of slices with Nω-nitro-l-arginine methyl ester (L-NAME), histamine injection decreased current amplitudes only by 31.9%, much less than the inhibition rate in control ( P < 0.01). In addition, histamine induced little change in current durations and paired-pulse facilitation ratios, representing a partial blockade of histamine effects on synaptic currents by L-NAME. In supraoptic neurons recorded using electrodes containing BAPTA and perifused with L-NAME, the effects of histamine on synaptic currents were completely abolished. Norepinephrine injection reversibly decreased current amplitudes by 39.1% and duration by 64.5%, with a drop in the paired-pulse facilitation ratio of 47.9%. Bath perifusion of L-NAME, as well as intracellular diffusion of GDP-β-S, , 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine , or BAPTA, failed to block norepinephrine-induced suppression of evoked synaptic currents. The present results suggest that histamine suppresses non- N-methyl-d-aspartate synaptic currents in supraoptic neurons through activation of H1receptors. It is possible that histamine first acts at supraoptic cells (perhaps both neuronal and nonneuronal) and induces the production of nitric oxide, which then diffuses to nearby neurons and modulates synaptic transmission by a postsynaptic mechanism.


1995 ◽  
Vol 83 (1) ◽  
pp. 109-119. ◽  
Author(s):  
Misha Perouansky ◽  
Dimitri Baranov ◽  
Michael Salman ◽  
Yoel Yaari

Background The effects of halothane on excitatory synaptic transmission in the central nervous system of mammals have been studied in vivo and in vitro in several investigations with partially contradicting results. Direct measurements of the effects of halothane on isolated glutamate receptor-mediated (glutamatergic) excitatory postsynaptic currents (EPSCs), however, have not been reported to date. Methods The effects of halothane on glutamatergic EPSCs were studied in vitro by using tight-seal, whole-cell recordings from CA1 pyramidal cells in thin slices from the adult mouse hippocampus. The EPSCs were pharmacologically isolated into their non-N-methyl-D-aspartate (non-NMDA) and NMDA receptor-mediated components by using selective antagonists. The effects of halothane on EPSC amplitude and kinetics were analyzed at various membrane potentials and were compared with its effects on currents evoked by exogenously applied glutamatergic agonists. Results Halothane (0.2-5.1%; 0.37-2.78 mM) reversibly blocked non-NMDA and NMDA EPSCs. This effect was voltage independent; concentrations producing 50% inhibition were 0.87% (0.66 mM) and 0.69% (0.57 mM), respectively. Currents induced by bath-applied glutamatergic agonists were not affected even by the high concentrations of halothane. Conclusions Halothane depresses glutamatergic EPSCs irrespective of receptor subtype, most likely by inhibition of glutamate release.


Sign in / Sign up

Export Citation Format

Share Document