Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain
Living without oxygen is limited to very few vertebrates, one species being the fresh water fish crucian carp ( Carassius carassius), which can survive months of anoxia at low temperatures. Mammalian heart and brain are particularly intolerant to oxygen deprivation, yet these organs can be conditioned to display increased resistance, possibly due to activation of several protein kinases. We hypothesized increased phosphorylation status of these kinases in hypoxic and anoxic crucian carp heart and brain. Moreover, we wanted to investigate whether the kinases showing the strongest phosphorylation during hypoxia/anoxia, ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ, also had increased expression and phosphorylation at cold temperatures, to better cope with the anoxic periods during winter. We found small differences in the phosphorylation status of ERK 1/2, p38-MAPK, JNK, PKCε, and PKCδ during 10 days of severe hypoxia in both heart and brain (0.3 mg O2/l) and varying responses to reoxygenation. In contrast, 7 days of anoxia (<0.01 mg O2/l) markedly increased phosphorylation of ERK 1/2, p38-MAPK, JNK in the heart, and p38-MAPK and PKCε in the brain. Similarly, varying acclimation temperature between 4, 10 and 20°C induced large changes in phosphorylation status. Total protein expression in heart and brain neither changed during different oxygen regimes nor with different acclimation temperatures, except for ERK 1/2, which slightly decreased in the heart at 4°C compared with 20°C. A phylogenetic analysis confirmed that these protein kinases are evolutionarily conserved across a wide range of vertebrate species. Our findings indicate important roles of several protein kinases during oxygen deprivation.