scholarly journals The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions

2015 ◽  
Vol 309 (11) ◽  
pp. R1447-R1459 ◽  
Author(s):  
John J. Gildea ◽  
Peng Xu ◽  
Julia M. Carlson ◽  
Robert T. Gaglione ◽  
Dora Bigler Wang ◽  
...  

The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2′-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake.

2006 ◽  
Vol 291 (3) ◽  
pp. F588-F596 ◽  
Author(s):  
Doris Joy D. Espiritu ◽  
Angelito A. Bernardo ◽  
Jose A. L. Arruda

Sodium bicarbonate cotransporter 1 (NBC1) mediates 80% of bicarbonate reabsorption by the kidney, but the molecular determinants for activity, targeting, and cell membrane stability are poorly understood. We generated truncation mutants involving the entire NH2 (ΔN424) or the entire COOH (ΔC92) terminus and examined the effects of these truncations on targeting, cell membrane stability, and NBC1 activity. ΔN424 and ΔC92 targeted to the plasma membrane of HEK293 cells or to the basolateral membrane of opossum kidney (OK) cells at 24 h but did not display NBC1 activity. Unlike the NBC1 wild-type and the ΔN424, ΔC92 expression was significantly decreased in the basolateral membrane at 48 h and yet the total ΔC92 expression in the cell was constant. We found that decreased ΔC92 expression in the basolateral membrane was due to increased endocytosis and mistargeting to the apical membrane. Increased endocytosis was prevented when both ΔN424 and ΔC92 were cotransfected together and more stable expression of ΔC92 was observed. Immunoprecipitation studies using NBC1 antibody specific for the COOH epitope were able to detect the COOH truncated NBC1 when probed with NH2 epitope-specific antibody or vice versa. Similar findings were observed with Ni-NTA pull-down assay. Cotransfection of both mutants partially restored NBC1 activity. In summary, NBC1 targets to the basolateral membrane of OK cells by a default mechanism and the COOH terminus plays a role on NBC1 stability in the basolateral membrane.


1990 ◽  
Vol 259 (6) ◽  
pp. F986-F999 ◽  
Author(s):  
B. Flamion ◽  
K. R. Spring

To quantify the pathways for water permeation through the kidney medulla, knowledge of the water permeability (Posmol) of individual cell membranes in inner medullary collecting duct (IMCD) is required. Therefore IMCD segments from the inner two thirds of inner medulla of Sprague-Dawley rats were perfused in vitro using a setup devised for rapid bath and luminal fluid exchanges (half time, t1/2, of 55 and 41 ms). Differential interference contrast microscopy, coupled to video recording, was used to measure volume and approximate surface areas of single cells. Volume and volume-to-surface area ratio of IMCD cells were strongly correlated with their position along the inner medullary axis. Transmembrane water flow (Jv) was measured in response to a variety of osmotic gradients (delta II) presented on either basolateral or luminal side of the cells. The linear relation between Jv and delta II yielded the cell membrane Posmol, which was then corrected for membrane infoldings. Basolateral membrane Posmol was 126 +/- 3 microns/s. Apical membrane Posmol rose from a basal value of 26 +/- 3 microns/s to 99 +/- 5 microns/s in presence of antidiuretic hormone (ADH). Because of amplification of basolateral membrane, the ADH-stimulated apical membrane remained rate-limiting for transcellular osmotic water flow, and the IMCD cell did not swell significantly. Calculated transcellular Posmol, expressed in terms of smooth luminal surface, was 64 microns/s without ADH and 207 microns/s with ADH. IMCD cells in anisosmotic media displayed almost complete volume regulatory decrease but only partial volume regulatory increase.


1999 ◽  
Vol 277 (4) ◽  
pp. L700-L708 ◽  
Author(s):  
Johannes Loffing ◽  
Bryan D. Moyer ◽  
Donna Reynolds ◽  
Bruce A. Stanton

Sodium 4-phenylbutyrate (PBA), a short-chain fatty acid, has been approved to treat patients with urea cycle enzyme deficiencies and is being evaluated in the management of sickle cell disease, thalassemia, cancer, and cystic fibrosis (CF). Because relatively little is known about the effects of PBA on the expression and function of the wild-type CF transmembrane conductance regulator (wt CFTR), the goal of this study was to examine the effects of PBA and related compounds on wt CFTR-mediated Cl−secretion. To this end, we studied Calu-3 cells, a human airway cell line that expresses endogenous wt CFTR and has a serous cell phenotype. We report that chronic treatment of Calu-3 cells with a high concentration (5 mM) of PBA, sodium butyrate, or sodium valproate but not of sodium acetate reduced basal and 8-(4-chlorophenylthio)-cAMP-stimulated Cl−secretion. Paradoxically, PBA enhanced CFTR protein expression 6- to 10-fold and increased the intensity of CFTR staining in the apical plasma membrane. PBA also increased protein expression of Na+-K+-ATPase. PBA reduced CFTR Cl−currents across the apical membrane but had no effect on Na+-K+-ATPase activity in the basolateral membrane. Thus a high concentration of PBA (5 mM) reduces Cl−secretion by inhibiting CFTR Cl−currents across the apical membrane. In contrast, lower therapeutic concentrations of PBA (0.05–2 mM) had no effect on cAMP-stimulated Cl−secretion across Calu-3 cells. We conclude that PBA concentrations in the therapeutic range are unlikely to have a negative effect on Cl−secretion. However, concentrations >5 mM might reduce transepithelial Cl−secretion by serous cells in submucosal glands in individuals expressing wt CFTR.


1993 ◽  
Vol 264 (4) ◽  
pp. F670-F677 ◽  
Author(s):  
D. H. Warden ◽  
J. B. Stokes

The rabbit cortical collecting duct absorbs Na+ by a transport system comprised of an apical membrane Na+ channel and a basolateral membrane Na(+)-K(+)-adenosinetriphosphatase. The rate of Na+ absorption across this epithelium is acutely inhibited by several hormones and autacoids including epidermal growth factor (EGF) and prostaglandin E2 (PGE2). We used electrophysiological analysis to determine which Na+ transport mechanism is primarily regulated in response to EGF and PGE2. We used concentrations of EGF and PGE2 that inhibited Na+ absorption to a comparable degree. We assessed the effects of these agents on Na+ transport primarily by the calculated equivalent current; the validity of this indicator was verified using simultaneous tracer flux measurements. EGF and PGE2 had different effects on the intracellular electrophysiological parameters. EGF (in the presence of a cyclooxygenase inhibitor) hyperpolarized the apical membrane voltage in a manner analogous to the Na(+)-channel blocker amiloride, reduced the transepithelial conductance, and increased the fractional resistance of the apical membrane. In comparison, PGE2 depolarized the apical membrane voltage in a manner analogous to the Na(+)-K+ pump inhibitor ouabain, and caused no significant changes in transepithelial conductance or apical membrane conductance. The finding that EGF hyperpolarized the apical membrane indicates that this agent attenuates Na+ absorption by reducing apical Na+ entry due to a decrease in the magnitude of the apical membrane Na+ conductance. In contrast, the electrophysiological changes produced by PGE2 indicate primary inhibition of the basolateral Na(+)-K+ pump following PGE2 treatment.


2001 ◽  
Vol 281 (5) ◽  
pp. F920-F935 ◽  
Author(s):  
Dean Bok ◽  
Matthew J. Schibler ◽  
Alexander Pushkin ◽  
Pejvak Sassani ◽  
Natalia Abuladze ◽  
...  

The human NBC1 gene encodes two electrogenic sodium-bicarbonate cotransport proteins, pNBC1 and kNBC1, which are candidate proteins for mediating electrogenic sodium-bicarbonate cotransport in ocular cells. Mutations in the coding region of the human NBC1 gene in exons common to both pNBC1 and kNBC1 result in a syndrome with a severe ocular and renal phenotype (blindness, band keratopathy, glaucoma, cataracts, and proximal renal tubular acidosis). In the present study, we determined the pattern of electrogenic sodium-bicarbonate cotransporter protein expression in rat eye. For this purpose, pNBC1- and kNBC1-specific antibodies were generated and used to detect these NBC1 protein variants by immunoblotting and immunocytochemistry. pNBC1 is expressed in cornea, conjunctiva, lens, ciliary body, and retina, whereas the expression of kNBC1 is restricted to the conjunctiva. These results provide the first evidence for extrarenal kNBC1 protein expression. The data in this study will serve as a basis for understanding the molecular mechanisms responsible for abnormalities in ocular electrogenic sodium-bicarbonate cotransport in patients with mutations in the NBC1 gene.


2010 ◽  
Vol 21 (12) ◽  
pp. 2024-2033 ◽  
Author(s):  
Xiubin Liang ◽  
Michael B. Butterworth ◽  
Kathryn W. Peters ◽  
Raymond A. Frizzell

Aldosterone-induced increases in apical membrane epithelial sodium channel (ENaC) density and Na transport involve the induction of 14-3-3 protein expression and their association with Nedd4-2, a substrate of serum- and glucocorticoid-induced kinase (SGK1)-mediated phosphorylation. A search for other 14-3-3 binding proteins in aldosterone-treated cortical collecting duct (CCD) cells identified the Rab-GAP, AS160, an Akt/PKB substrate whose phosphorylation contributes to the recruitment of GLUT4 transporters to adipocyte plasma membranes in response to insulin. In CCD epithelia, aldosterone (10 nM, 24 h) increased AS160 protein expression threefold, with a time-course similar to increases in SGK1 expression. In the absence of aldosterone, AS160 overexpression increased total ENaC expression 2.5-fold but did not increase apical membrane ENaC or amiloride-sensitive Na current (Isc). In AS160 overexpressing epithelia, however, aldosterone increased apical ENaC and Isc 2.5-fold relative to aldosterone alone, thus recruiting the accumulated ENaC to the apical membrane. Conversely, AS160 knockdown increased apical membrane ENaC and Isc under basal conditions to ∼80% of aldosterone-stimulated values, attenuating further steroid effects. Aldosterone induced AS160 phosphorylation at five sites, predominantly at the SGK1 sites T568 and S751, and evoked AS160 binding to the steroid-induced 14-3-3 isoforms, β and ε. AS160 mutations at SGK1 phospho-sites blocked its selective interaction with 14-3-3β and ε and suppressed the ability of expressed AS160 to augment aldosterone action. These findings indicate that the Rab protein regulator, AS160, stabilizes ENaC in a regulated intracellular compartment under basal conditions, and that aldosterone/SGK1-dependent AS160 phosphorylation permits ENaC forward trafficking to the apical membrane to augment Na absorption.


1998 ◽  
Vol 9 (9) ◽  
pp. 1553-1559
Author(s):  
R Baumgarten ◽  
M H Van De Pol ◽  
J F Wetzels ◽  
C H Van Os ◽  
P M Deen

Glycosylation has been shown to be important for proper routing and membrane insertion of a number of proteins. In the collecting duct, aquaporin-2 (AQP2) is inserted into the apical membrane after stimulation of vasopressin type-2 receptors and retrieved into an endosomal compartment after withdrawal of vasopressin. The extent of glycosylation of AQP2 in human kidney and urine and the effects of deglycoylation on routing of AQP2 in an AQP2-transfected Madin-Darby canine kidney cell line (clone WT10) were investigated. Semiquantitative immunoblotting of human kidney membranes and urine showed an AQP2 glycosylation of 35 to 45% for medulla, papilla, and urine, with low variation among individuals. The 1-desamino-8-D-arginine vasopressin-induced transcellular osmotic water permeability (Pf) of WT10 cells by a factor of 2.6 +/- 0.2 was reduced to 1.5 +/- 0.1 after pretreatment with the glycosylation inhibitor tunicamycin. However, when WT10 cells were incubated with 8-br-cAMP, the Pf increased by a factor 2.8 +/- 0.2 and by 2.9 +/- 0.2 after prior incubation with tunicamycin. Immunoblot analyses revealed that in WT10 cells, 34% of AQP2 is glycosylated, which was reduced to 2% after tunicamycin treatment. Surface biotinylation and subsequent semiquantitative immunoblotting revealed that stimulation by cAMP increased the level of AQP2 in the apical membrane of WT10 cells 1.5-fold. independent of the presence of tunicamycin. However, in tunicamycin-treated WT10 cells, all AQP2 in the apical membrane was unglycosylated, whereas in untreated cells 30% of AQP2 in the apical membrane was glycosylated. These results prove that glycosylation has no function in the routing of AQP2 in Madin-Darby canine kidney cells.


1992 ◽  
Vol 263 (5) ◽  
pp. F870-F877 ◽  
Author(s):  
S. Muto ◽  
M. Imai ◽  
Y. Asano

We have reported that in the rabbit cortical collecting duct (CCD) we can identify electrophysiologically three distinct cell types; the collecting duct (CD) cell and the alpha- and beta-intercalated (IC) cell. To further characterize the Cl- transport properties of each cell type, we examined the interaction between Cl- and other halogens or SCN- in the isolated and perfused CCD by intracellular microelectrode impalement. The rapid depolarization of the basolateral membrane potential (VB) caused by replacement of bath Cl- with each anion revealed that the sequences of apparent halogen selectivity for the basolateral Cl- conductance were similar in all three cell types. The ranking of Cl- > Br- > F- > I- corresponds to the sequence 5 of Eisenman's series, indicating “strong” interaction of the anions with the selectivity site. The basolateral Cl- conductance of these three cell types may share common characteristics, although I- permeability is less in IC cells than in CD cells. Hyperpolarization of the basolateral membrane of the beta-IC cell upon reduction of luminal Cl- reflects alterations in either Cl- entry across the apical membrane, or Cl- exit across the basolateral membrane, or both. Luminal Cl- replacement with each anion showed that the sequence of the hyperpolarization of the basolateral membrane was I- >> cyclamate = SCN- > F- > Br-, suggesting that I-inhibits either apical Cl- entry or basolateral Cl- exit. On the other hand, in the CD cell reduction of the perfusate Cl- by replacement with each anion caused the basolateral membrane to hyperpolarize with a different ranking: cyclamate = F- > I- = SCN- > Br-.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document