sodium bicarbonate cotransporter
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 1)

2022 ◽  
Vol 23 (1) ◽  
pp. 532
Author(s):  
Soojung Lee ◽  
Jason Lin ◽  
Inyeong Choi

The Na/HCO3 cotransporter NBCe1 is a member of SLC4A transporters that move HCO3− across cell membranes and regulate intracellular pH or transepithelial HCO3 transport. NBCe1 is highly selective to HCO3− and does not transport other anions; the molecular mechanism of anion selectivity is presently unclear. We previously reported that replacing Asp555 with a Glu (D555E) in NBCe1 induces increased selectivity to other anions, including Cl−. This finding is unexpected because all SLC4A transporters contain either Asp or Glu at the corresponding position and maintain a high selectivity to HCO3−. In this study, we tested whether the Cl− transport in D555E is mediated by an interaction between residues in the ion binding site. Human NBCe1 and mutant transporters were expressed in Xenopus oocytes, and their ability to transport Cl− was assessed by two-electrode voltage clamp. The results show that the Cl− transport is induced by a charge interaction between Glu555 and Lys558. The bond length between the two residues is within the distance for a salt bridge, and the ionic strength experiments confirm an interaction. This finding indicates that the HCO3− selectivity in NBCe1 is established by avoiding a specific charge interaction in the ion binding site, rather than maintaining such an interaction.


2021 ◽  
Vol 22 (23) ◽  
pp. 12817
Author(s):  
Thamer A. Alsufayan ◽  
Evan J. Myers ◽  
Bianca N. Quade ◽  
Clayton T. Brady ◽  
Aniko Marshall ◽  
...  

In most cell types and heterologous expression systems, the electrogenic sodium-bicarbonate cotransporter NBCe1 operates with a 1Na+–2HCO3− stoichiometry that, given typical transmembrane electrochemical gradients, promotes Na+ and HCO3− influx. However, NBCe1 in the kidney mediates HCO3− efflux (HCO3− reabsorption), a direction that has been predicted to be favored only if NBCe1 operates with a 1:3 stoichiometry. The phosphorylation state of Ser982 in the cytosolic carboxy-terminal domain of NBCe1 has been reported to be a key determinant of the transporter stoichiometry, with non-phosphorylated Ser982 favoring a 1:3 stoichiometry. Conversely, phosphoproteomic data from renal cortical preparations have revealed the presence of NBCe1 peptides including phosphoserine982 (pSer982) and/or pSer985 although it was not known what proportion of NBCe1 molecules were phosphorylated. In the present study, we report the generation, characterization, and application of a novel phosphospecific antibody raised against NBCe1/pSer982 and show that, contrary to expectations, Ser982 is more prevalently phosphorylated in murine kidneys (in which NBCe1 mediates HCO3− efflux) than in murine colons (in which NBCe1 mediates HCO3− influx). Using phosphomimetic mutants of murine NBCe1 expressed in Xenopus oocytes, we found no evidence that the phosphorylation state of Ser982 or Ser985 alone influences the transport stoichiometry or conductance. Furthermore, we found that the phosphorylation of NBCe1/Ser982 is enhanced in murine kidneys following a 24 h induction of metabolic acidosis. We conclude that the phosphorylation status of Ser982 is not a key determinant of NBCe1 stoichiometry but correlates with presumed NBCe1 activity.


2021 ◽  
Vol 131 (17) ◽  
Author(s):  
Matthew R. Brown ◽  
Heather Holmes ◽  
Kuntol Rakshit ◽  
Naureen Javeed ◽  
Tracy K. Her ◽  
...  

2021 ◽  
Vol 401 ◽  
pp. 113065
Author(s):  
Inyeong Choi ◽  
Kristian Beedholm ◽  
Vibeke S. Dam ◽  
Seong-Ho Bae ◽  
Donald J. Noble ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shefeeq M. Theparambil ◽  
Patrick S. Hosford ◽  
Iván Ruminot ◽  
Olga Kopach ◽  
James R. Reynolds ◽  
...  

Abstract Brain cells continuously produce and release protons into the extracellular space, with the rate of acid production corresponding to the levels of neuronal activity and metabolism. Efficient buffering and removal of excess H+ is essential for brain function, not least because all the electrogenic and biochemical machinery of synaptic transmission is highly sensitive to changes in pH. Here, we describe an astroglial mechanism that contributes to the protection of the brain milieu from acidification. In vivo and in vitro experiments conducted in rodent models show that at least one third of all astrocytes release bicarbonate to buffer extracellular H+ loads associated with increases in neuronal activity. The underlying signalling mechanism involves activity-dependent release of ATP triggering bicarbonate secretion by astrocytes via activation of metabotropic P2Y1 receptors, recruitment of phospholipase C, release of Ca2+ from the internal stores, and facilitated outward HCO3− transport by the electrogenic sodium bicarbonate cotransporter 1, NBCe1. These results show that astrocytes maintain local brain extracellular pH homeostasis via a neuronal activity-dependent release of bicarbonate. The data provide evidence of another important metabolic housekeeping function of these glial cells.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 816
Author(s):  
Soyoung Hwang ◽  
Dong Min Shin ◽  
Jeong Hee Hong

IP3 receptor-binding protein released with IP3 (IRBIT) interacts with various ion channels and transporters. An electroneutral type of sodium bicarbonate cotransporter, NBCn1, participates in cell migration, and its enhanced expression is related to cancer metastasis. The effect of IRBIT on NBCn1 and its relation to cancer cell migration remain obscure. We therefore aimed to determine the effect of IRBIT on NBCn1 and the regulation of cancer cell migration due to IRBIT-induced alterations in NBCn1 activity. Overexpression of IRBIT enhanced cancer cell migration and NBC activity. Knockdown of IRBIT or NBCn1 and treatment with an NBC-specific inhibitor, S0859, attenuated cell migration. Stimulation with oncogenic epidermal growth factor enhanced the expression of NBCn1 and migration of cancer cells by recruiting IRBIT. The recruited IRBIT stably maintained the expression of the NBCn1 transporter machinery in the plasma membrane. Combined inhibition of IRBIT and NBCn1 dramatically inhibited the migration of cancer cells. Combined modulation of IRBIT and NBCn1 offers an effective strategy for attenuating cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document