Hydrogen sulfide stimulates catecholamine secretion in rainbow trout (Oncorhynchus mykiss)

2009 ◽  
Vol 296 (1) ◽  
pp. R133-R140 ◽  
Author(s):  
Steve F. Perry ◽  
Brian McNeill ◽  
Eshay Elia ◽  
Ashish Nagpal ◽  
Branka Vulesevic

We tested the hypothesis that endogenously produced hydrogen sulfide (H2S) can potentially contribute to the adrenergic stress response in rainbow trout by initiating catecholamine secretion from chromaffin cells. During acute hypoxia (water Po2 = 35 mmHg), plasma H2S levels were significantly elevated concurrently with a rise in circulating catecholamine concentrations. Tissues enriched with chromaffin cells (posterior cardinal vein and anterior kidney) produced H2S in vitro when incubated with l-cysteine. In both tissues, the production of H2S was eliminated by adding the cystathionine β-synthase inhibitor, aminooxyacetate. Cystathionine β-synthase and cystathionine γ-lyase were cloned and sequenced and the results of real-time PCR demonstrated that with the exception of white muscle, mRNA for both enzymes was broadly distributed within the tissues that were examined. Electrical field stimulation of an in situ saline-perfused posterior cardinal vein preparation caused the appearance of H2S and catecholamines in the outflowing perfusate. Perfusion with the cholinergic receptor agonist carbachol (1 × 10−6 M) or depolarizing levels of KCl (1 × 10−2 M) caused secretion of catecholamines without altering H2S output, suggesting that neuronal excitation is required for H2S release. Addition of H2S (at concentrations exceeding 5 × 10−7 M) to the perfusion fluid resulted in a marked stimulation of catecholamine secretion that was not observed when Ca2+-free perfusate was used. These data, together with the finding that H2S-induced catecholamine secretion was unaltered by the nicotinic receptor blocker hexamethonium, suggest that H2S is able to directly elicit catecholamine secretion via membrane depolarization followed by Ca2+-mediated exocytosis.

2000 ◽  
Vol 166 (3) ◽  
pp. 705-714 ◽  
Author(s):  
CJ Montpetit ◽  
SF Perry

The aim of the present investigation was to assess the relative contributions of cholinergic (acetylcholine) and non-cholinergic vasoactive intestinal polypeptide (VIP), and pituitary adenylate cyclase activating polypeptide (PACAP) neurotransmitters in the neuronal control of catecholamine secretion from the chromaffin tissue lining the posterior cardinal vein of the rainbow trout (Oncorhynchus mykiss). Using an in situ saline-perfused posterior cardinal vein preparation, it was demonstrated that exogenous administration of chicken VIP or human PACAP-27 caused a dose-dependent increase in adrenaline secretion; noradrenaline secretion was unaffected. Analysis of dose-response curves indicated that VIP and PACAP stimulated the secretion of adrenaline with a similar degree of potency (ED(50) for VIP=1.90x10(-11) mol/kg; ED(50) for PACAP=1.03x10(-11) mol/kg). The VIP/PACAP-elicited secretion was diminished in the presence of the VIP receptor antagonist, VIP 6-28, but was unaffected by the PACAP receptor antagonist, PACAP 6-27, or the cholinergic antagonists, hexamethonium and atropine. Thus, this is the first study to demonstrate a direct stimulatory role for VIP or PACAP in catecholamine secretion from piscine chromaffin cells. The relative contribution of cholinergic and non-cholinergic neurotransmitters in the neuronal control of catecholamine secretion from the chromaffin tissue was evaluated using an in situ nerve-stimulating technique previously validated by us in the rainbow trout. This was accomplished by comparing catecholamine secretion in the presence or absence of cholinergic and the VIP and PACAP receptor antagonists during different levels of electrical stimulation. The results demonstrated that cholinergic stimulation predominated during high frequency of electrical stimulation (20 Hz) while the non-cholinergic component prevailed at low frequency (1 Hz). Overall, the results of the present investigation demonstrate that VIP and/or PACAP may directly stimulate adrenaline secretion from trout chromaffin cells at low levels of neuronal activity. Therefore, the neuronal control of catecholamine secretion in teleosts may not be confined to cholinergic-evoked events.


2000 ◽  
Vol 203 (9) ◽  
pp. 1487-1495 ◽  
Author(s):  
S.F. Perry ◽  
C.J. Montpetit ◽  
M. Borowska

The potential direct and modulating effects of acute hypoxia on catecholamine secretion in rainbow trout (Oncorhynchus mykiss) were assessed in situ, using a perfused cardinal vein preparation, and in vivo, using chronically cannulated fish. Acute (10 min) perfusion with hypoxic (P(O2)<10 mmHg) saline or homologous hypoxic blood did not have a statistically significant effect on basal (non-stimulated) catecholamine secretion. A field stimulation technique was used to excite the sympathetic nerves innervating the chromaffin cells electrically in situ under conditions of high-P(O2) (saline P(O2)=152 mmHg; 1 mmHg=0.133 kPa) or low-P(O2) (saline P(O2)<10 mmHg) perfusion at constant P(CO2) (2.3 mmHg). The results demonstrated that neuronally evoked catecholamine secretion was significantly lowered by 50 % during perfusion with hypoxic saline. To assess whether the inhibitory effect of hypoxia during neuronal stimulation in situ resulted from modulation of nicotinic and/or muscarinic receptor-linked pathways, perfused posterior cardinal vein preparations were injected with selective nicotinic (10(−)(7) or 10(−)(6)mol kg(−)(1) nicotine) or muscarinic (10(−)(3)mol kg(−)(1) methacholine) receptor agonists. For both doses of nicotine, catecholamine secretion was significantly lowered during hypoxia by 55 %. During muscarinic receptor stimulation, perfusion with hypoxic saline caused a 42 % reduction in the rate of catecholamine secretion. In contrast, catecholamine secretion elicited by depolarising levels of KCl (60 mmol l(−)(1)) was unaffected by the oxygen status of the perfusate. In vivo, intra-arterial injections of nicotine (300–600 nmol kg(−)(1)) into normoxic (water P(O2)=155 mmHg) or moderately hypoxic fish (water P(O2)=80 mmHg) caused a dose-dependent elevation of circulating catecholamine levels. However, despite the inhibitory influence of localised hypoxia on chromaffin cell responsiveness previously demonstrated in situ, the increase in plasma catecholamine levels after intra-arterial injection of nicotine was significantly enhanced in the hypoxic fish. The differences between the results from the in vivo and in situ experiments may reflect the contribution of higher control centres and modulating factors in vivo that are absent in situ.


1976 ◽  
Vol 41 (5) ◽  
pp. 764-771 ◽  
Author(s):  
J. Richardson ◽  
J. Beland

Human airways, from the middle of the trachea to the distal bronchi, were studied in vitro for the presence of inhibitory nerves. The tissue was obtained from operations and from recent autopsies. Electrical field stimulation of the tissues demonstrated cholinergic, excitatory nerves and their effect was blocked by atropine. Field stimulation of the tissues, in the presence of atropine, relaxed the smooth muscle even when the muscle was contracted by histamine. The field stimulation-induced relaxation was neither blocked nor modified by adrenergic blocking agents. Maximum relaxation of the bronchial muscle was obtained with a pulse duration of 1–2 ms, 70 V,and frequencies of 20 Hz and greater. The tracheal smooth muscle showed 85%of maximal relaxation with a frequency of 10 Hz. Tetrodotoxin, blocked the field stimulation-induced relaxation for pulse durations of 2 ms; this indicated that nerves were being stimulated. The airway system shows some of the characteristics of the nonadrenergic inhibitory system in the gastrointestinal tract and of the system reported in the guinea pig trachealis muscle.No evidence of adrenergic inhibitory fibers was found in the bronchial muscle with either pharmacological or histochemical techniques. These findings suggest that the nonadrenergic inhibitory system is the principal inhibitory system for the smooth muscle of human airways. We suggest that a defect in the airway system, such as that shown in the gastrointestinal tract, may be an explanation for the hyperreactive airways of asthma and chronic bronchitis.


1980 ◽  
Vol 238 (1) ◽  
pp. C27-C33 ◽  
Author(s):  
M. S. Kannan ◽  
E. E. Daniel

The structural bases for myogenic and neurogenic control of canine tracheal smooth muscle were studied. At optimum lengths, strips of muscle showed insignificant neurogenic or myogenic tone. Atropine and/or tetrodotoxin blocked the contractile responses elicited on electrical field stimulation of intrinsic nerves. After raising the tone with tetraethylammonium ion and in the presence of atropine, field stimulation of nerves caused a relaxation, a major component of which was blocked by propranolol and/or tetrodotoxin, suggesting an effect mediated through interaction of mediator released from sympathetic nerves with beta-adrenergic receptors. Electron microscopic studies revealed gap junctions between extensions of smooth-muscle cells and a sparse innervation. The axonal varicosities, corresponding to cholinergic (predominantly) and adrenergic (occasionally) nerves, were seen predominantly in the clefts between cell bundles. The physiological responses were compared with the morphological features. Although this muscle exhibits multiunit behavior in vitro, implying that nerves initiate the coordinate activity, its ultrastructural features suggest a potential for single-unit behavior.


2014 ◽  
Vol 22 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Padmanabha Chakrabarti ◽  
Saroj Kumar Ghosh

Abstract The present study focused on observations of the histological status of adrenocortical tissues and the correlated seasonal changes in testicular activities in Puntius sarana (Hamilton). Interrenal and chromaffin cells were located in the head kidney between the posterior cardinal vein and hemopoietic tissues. Various male germ cells were identified in the testis based on distinctive features, distribution, and staining properties. The cytoplasmic features and the architecture of the interrenal and chromaffin cells varied during different phases of the annual reproductive cycle. The cytoplasm mass was elevated throughout maturation and spawning phases; however, it was weak in the post-spawning and growth phases. The staining intensity changed in the cells showing various phases of secretory efficiency harmonized with the constitution of different testicular cells.


Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 180-192 ◽  
Author(s):  
Mark K. Lukewich ◽  
Alan E. Lomax

Enhanced epinephrine secretion from adrenal chromaffin cells (ACCs) is an important homeostatic response to severe systemic inflammation during sepsis. Evidence suggests that increased activation of ACCs by preganglionic sympathetic neurons and direct alterations in ACC function contribute to this response. However, the direct effects of sepsis on ACC function have yet to be characterized. We hypothesized that sepsis enhances epinephrine secretion from ACCs by increasing intracellular Ca2+ signaling. Plasma epinephrine concentration was increased 5-fold in the lipopolysaccharide-induced endotoxemia model of sepsis compared with saline-treated control mice. Endotoxemia significantly enhanced stimulus-evoked epinephrine secretion from isolated ACCs in vitro. Carbon fiber amperometry revealed an increase in the number of secretory events during endotoxemia, without significant changes in spike amplitude, half-width, or quantal content. ACCs isolated up to 12 hours after the induction of endotoxemia exhibited larger stimulus-evoked Ca2+ transients compared with controls. Similarly, ACCs from cecal ligation and puncture mice also exhibited enhanced Ca2+ signaling. Although sepsis did not significantly affect ACC excitability or voltage-gated Ca2+ currents, a 2-fold increase in caffeine (10 mM)-stimulated Ca2+ transients was observed during endotoxemia. Depletion of endoplasmic reticulum Ca2+ stores using cyclopiazonic acid (10 μM) abolished the effects of endotoxemia on catecholamine secretion from ACCs. These findings suggest that sepsis directly enhances catecholamine secretion from ACCs through an increase in Ca2+ release from the endoplasmic reticulum. These alterations in ACC function are likely to amplify the effects of increased preganglionic sympathetic neuron activity to further enhance epinephrine levels during sepsis.


Sign in / Sign up

Export Citation Format

Share Document