Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome

2013 ◽  
Vol 305 (9) ◽  
pp. R1010-R1020 ◽  
Author(s):  
Nishad Jayasundara ◽  
Luke D. Gardner ◽  
Barbara A. Block

Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecular responses in atrial and ventricular tissues of Pacific bluefin tuna acclimated to 14°C, 20°C, and 25°C. Quantitative PCR studies showed an increase in sarcoplasmic reticulum Ca2+ ATPase gene expression with cold acclimation and an induction of Na+/Ca2+-exchanger gene at both cold and warm temperatures. These data provide evidence for thermal plasticity of excitation-contraction coupling gene expression in bluefin tunas and indicate an increased capacity for internal Ca2+ storage in cardiac myocytes at 14°C. Transcriptomic analysis showed profound changes in cardiac tissues with acclimation. A principal component analysis revealed that temperature effect was greatest on gene expression in warm-acclimated atrium. Overall data showed an increase in cardiac energy metabolism at 14°C, potentially compensating for cold temperature to optimize bluefin tuna performance in colder oceans. In contrast, metabolic enzyme activity and gene expression data suggest a decrease in ATP production at 25°C. Expression of genes involved in protein turnover and molecular chaperones was also decreased at 25°C. Expression of genes involved in oxidative stress response and programmed cell death suggest an increase in oxidative damage and apoptosis at 25°C, particularly in the atrium. These findings provide insights into molecular processes that may characterize cardiac phenotypes at upper thermal limits of teleosts.

2021 ◽  
Vol 43 (3) ◽  
pp. 2098-2110
Author(s):  
Motoshige Yasuike ◽  
Kazunori Kumon ◽  
Yosuke Tanaka ◽  
Kenji Saitoh ◽  
Takuma Sugaya

Mass spawning in fish culture often brings about a marked variance in family size, which can cause a reduction in effective population sizes in seed production for stock enhancement. This study reports an example of combined pedigree information and gene expression phenotypes to understand differential family survival mechanisms in early stages of Pacific bluefin tuna, Thunnus orientalis, in a mass culture tank. Initially, parentage was determined using the partial mitochondrial DNA control region sequence and 11 microsatellite loci at 1, 10, 15, and 40 days post-hatch (DPH). A dramatic proportional change in the families was observed at around 15 DPH; therefore, transcriptome analysis was conducted for the 15 DPH larvae using a previously developed oligonucleotide microarray. This analysis successfully addressed the family-specific gene expression phenotypes with 5739 differentially expressed genes and highlighted the importance of expression levels of gastric-function-related genes at the developmental stage for subsequent survival. This strategy demonstrated herein can be broadly applicable to species of interest in aquaculture to comprehend the molecular mechanism of parental effects on offspring survival, which will contribute to the optimization of breeding technologies.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Adam Ciezarek ◽  
Luke Gardner ◽  
Vincent Savolainen ◽  
Barbara Block

Abstract Background The Pacific bluefin tuna (Thunnus orientalis) is a regionally endothermic fish that maintains temperatures in their swimming musculature, eyes, brain and viscera above that of the ambient water. Within their skeletal muscle, a thermal gradient exists, with deep muscles, close to the backbone, operating at elevated temperatures compared to superficial muscles near the skin. Their heart, by contrast, operates at ambient temperature, which in bluefin tunas can range widely. Cardiac function in tunas reduces in cold waters, yet the heart must continue to supply blood for metabolically demanding endothermic tissues. Physiological studies indicate Pacific bluefin tuna have an elevated cardiac capacity and increased cold-tolerance compared to warm-water tuna species, primarily enabled by increased capacity for sarcoplasmic reticulum calcium cycling within the cardiac muscles. Results Here, we compare tissue-specific gene-expression profiles of different cardiac and skeletal muscle tissues in Pacific bluefin tuna. There was little difference in the overall expression of calcium-cycling and cardiac contraction pathways between atrium and ventricle. However, expression of a key sarcoplasmic reticulum calcium-cycling gene, SERCA2b, which plays a key role maintaining intracellular calcium stores, was higher in atrium than ventricle. Expression of genes involved in aerobic metabolism and cardiac contraction were higher in the ventricle than atrium. The two morphologically distinct tissues that derive the ventricle, spongy and compact myocardium, had near-identical levels of gene expression. More genes had higher expression in the cool, superficial muscle than in the warm, deep muscle in both the aerobic red muscle (slow-twitch) and anaerobic white muscle (fast-twitch), suggesting thermal compensation. Conclusions We find evidence of widespread transcriptomic differences between the Pacific tuna ventricle and atrium, with potentially higher rates of calcium cycling in the atrium associated with the higher expression of SERCA2b compared to the ventricle. We find no evidence that genes associated with thermogenesis are upregulated in the deep, warm muscle compared to superficial, cool muscle. Heat generation may be enabled by by the high aerobic capacity of bluefin tuna red muscle.


2012 ◽  
Vol 178 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Atsushi Suda ◽  
Hiroyuki Kaiya ◽  
Hideki Nikaido ◽  
Satoshi Shiozawa ◽  
Kenzo Mishiro ◽  
...  

Aquaculture ◽  
2021 ◽  
pp. 736562
Author(s):  
Koji Murashita ◽  
Hiroshi Hashimoto ◽  
Toshinori Takashi ◽  
Takeshi Eba ◽  
Kazunori Kumon ◽  
...  

2016 ◽  
Vol 174 ◽  
pp. 30-39 ◽  
Author(s):  
Yumi Okochi ◽  
Osamu Abe ◽  
Sho Tanaka ◽  
Yukio Ishihara ◽  
Akio Shimizu

2014 ◽  
Vol 81 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Yasuo Agawa ◽  
Mayui Iwaki ◽  
Takafumi Komiya ◽  
Tomoki Honryo ◽  
Kouhei Tamura ◽  
...  

2014 ◽  
Vol 47 (7) ◽  
pp. 2040-2049 ◽  
Author(s):  
Takayuki Ohnishi ◽  
Amal Biswas ◽  
Kohshi Kaminaka ◽  
Takahiro Nakao ◽  
Masashi Nakajima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document