Role of prostaglandins in determining the increased cardiac sympathetic nerve activity in ovine sepsis

2014 ◽  
Vol 307 (1) ◽  
pp. R75-R81 ◽  
Author(s):  
Lindsea C. Booth ◽  
Rohit Ramchandra ◽  
Paolo Calzavacca ◽  
Clive N. May

Effective treatment of sepsis remains a significant challenge in intensive care units. During sepsis, there is widespread activation of the sympathetic nervous system, which is thought to have both beneficial and detrimental effects. The sympathoexcitation is thought to be partly due to the developing hypotension, but may also be a response to the inflammatory mediators released. Thus, we investigated whether intracarotid infusion of prostaglandin E2 (PGE2) induced similar cardiovascular changes to those caused by intravenous infusion of Escherichia coli in sheep and whether inhibition of prostaglandin synthesis, with the nonselective cyclooxygenase inhibitor indomethacin, administered at 2 and 8 h after the onset of sepsis, reduced sympathetic nerve activity (SNA), and heart rate (HR). Studies were performed in conscious sheep instrumented to measure mean arterial pressure (MAP), HR, cardiac SNA (CSNA), and renal SNA (RSNA). Intracarotid infusion of PGE2 (50 ng·kg−1·min−1) increased temperature, CSNA, and HR, but not MAP or RSNA. Sepsis, induced by infusion of E. coli, increased CSNA, but caused an initial, transient inhibition of RSNA. At 2 h of sepsis, indomethacin (1.25 mg/kg bolus) increased MAP and caused reflex decreases in HR and CSNA. After 8 h of sepsis, indomethacin did not alter MAP, but reduced CSNA and HR, without altering baroreflex control. These findings indicate an important role for prostaglandins in mediating the increase in CSNA and HR during the development of hyperdynamic sepsis, whereas prostaglandins do not have a major role in determining the early changes in RSNA.

2009 ◽  
Vol 296 (4) ◽  
pp. H1058-H1068 ◽  
Author(s):  
Tomoko K. Ichinose ◽  
Donal S. O'Leary ◽  
Tadeusz J. Scislo

The role of nucleus of solitary tract (NTS) A2a adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A2a adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A2a adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A2a receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A2a receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A1 + A2a receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/α-chloralose anesthetized rats. Activation of A2a receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A2a adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.


2016 ◽  
Vol 310 (1) ◽  
pp. R94-R99 ◽  
Author(s):  
Yonis Abukar ◽  
Clive N. May ◽  
Rohit Ramchandra

Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg−1·h−1) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep ( n = 6) and sheep with pacing-induced HF ( n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (−8 ± 4 mmHg and −4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.


2018 ◽  
Vol 315 (2) ◽  
pp. H340-H347 ◽  
Author(s):  
Rohit Ramchandra ◽  
Sally G. Hood ◽  
Daniel Xing ◽  
Gavin W. Lambert ◽  
Clive N. May

Patients with heart failure (HF) have increased levels of cardiac norepinephrine (NE) spillover, which is an independent predictor of mortality. We hypothesized that this increase in NE spillover in HF depends not only on increases in sympathetic nerve activity (SNA) but also on changes in the mechanisms controlling NE release and reuptake. Such changes would lead to differences between the increases in directly recorded SNA and NE spillover to the heart in HF. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA (CSNA). In addition, arterial pressure and cardiac NE spillover were determined. In HF, the levels of both CSNA (102 ± 8 vs. 45 ± 8 bursts/min, P < 0.05) and cardiac NE spillover (21.6 ± 3.8 vs. 3.9 ± 0.8 pmol/min, P < 0.05) were significantly higher than in normal control animals. In HF, baroreflex control of cardiac NE spillover was impaired, and when CSNA was abolished by increasing arterial pressure, there was no reduction in cardiac NE spillover. A decrease in cardiac filling pressures in the HF group led to a significant increase in CSNA, but it significantly decreased cardiac NE spillover. In HF, the levels of cardiac NE spillover were enhanced above those expected from the high level of SNA, suggesting that changes in mechanisms controlling NE release and reuptake further increase the high level of NE at the heart, which will act to enhance the deleterious effects of increased CSNA in HF. NEW & NOTEWORTHY This is the first study, to our knowledge, to compare direct recordings of cardiac sympathetic nerve activity with simultaneously measured cardiac norepinephrine (NE) spillover. Our results indicate that in heart failure, increased cardiac sympathetic nerve activity is a major contributor to the increased NE spillover. In addition, there is enhanced NE spillover for the levels of synaptic nerve activity.


Sign in / Sign up

Export Citation Format

Share Document