Norepinephrine turnover in brown adipose tissue is stimulated by a single meal

1986 ◽  
Vol 251 (1) ◽  
pp. R13-R17 ◽  
Author(s):  
Z. Glick ◽  
W. J. Raum

A single meal stimulates brown adipose tissue (BAT) thermogenesis in rats. In the present study the role of norepinephrine in this thermogenic response was assessed from the rate of its turnover in BAT after a single test meal. For comparison, norepinephrine turnover was determined in the heart and spleen. A total of 48 male Wistar rats (200 g) were trained to eat during two feeding sessions per day. On the experimental day, one group (n = 24) was meal deprived and the other (n = 24) was given a low-protein high-carbohydrate test meal for 2 h. The synthesis inhibition method with alpha-methyl-p-tyrosine was employed to determine norepinephrine turnover from its concentration at four hourly time points after the meal. Tissue concentrations of norepinephrine were determined by radioimmunoassay. Norepinephrine concentration and turnover rate were increased more than threefold in BAT of the meal-fed compared with the meal-deprived rats (P less than 0.001 and P less than 0.005 for concentration and turnover, respectively). Neither were significantly altered by the meal in the heart or spleen. Other measures of turnover kinetics, turnover time and rate constant, were not significantly affected in any of the tissues examined. Our data suggest that norepinephrine mediates a portion of the thermic effect of meals that originate in BAT.

1985 ◽  
Vol 249 (6) ◽  
pp. R694-R698 ◽  
Author(s):  
J. R. Lupien ◽  
Z. Glick ◽  
M. Saito ◽  
G. A. Bray

A single meal results in an increased thermic activity of brown adipose tissue (BAT). The purpose of the present studies was threefold: 1) to identify major metabolic origins involved in this thermic response, 2) to determine the effect of meal composition on it, and 3) to determine time changes in postprandial brown fat thermogenesis. Wistar rats were trained to eat during 2 feeding sessions/day. On the days of the experiment, rats received a test meal for 2 h, and respective control rats were simultaneously meal deprived. The animals were killed at one or more time points after meal onset, and their BAT was removed for determination of mitochondrial guanosine diphosphate (GDP) binding to indicate rate of uncoupled respiration (expts 1 and 3) or Na+-K+-ATPase activity representing coupled respiration (expt 2). Meal taking was followed by an 85% increase in GDP binding (P less than 0.001). In contrast, Na+-K+-ATPase activity was not altered by a test meal of a similar composition. The largest meal-induced rise in mitochondrial GDP binding was evident during the early postprandial hours, and it was greatly reduced by 10 h after meal onset. Expressed per total interscapular brown fat depot, a high-carbohydrate meal caused a greater increase in GDP binding than an equicaloric high-fat meal. Our data indicate that the BAT proton conductance pathway is activated by a single meal.


1984 ◽  
Vol 114 (3) ◽  
pp. 543-549 ◽  
Author(s):  
Arlene V. Kevonian ◽  
Jerry G. Vander Tuig ◽  
Dale R. Romsos

1987 ◽  
Vol 253 (2) ◽  
pp. E149-E157
Author(s):  
H. K. Kim ◽  
D. R. Romsos

Adrenalectomy prevents development of obesity in ob/ob mice fed high-carbohydrate stock diets partly by stimulating the low thermogenic capacity of their brown adipose tissue (BAT). Adrenalectomy, however, fails to prevent development of obesity in ob/ob mice fed a high-fat diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed a high-fat diet were thus examined. ob/ob mice fed the high-fat diet developed gross obesity despite normal BAT metabolism, as assessed by rates of norepinephrine turnover in BAT, GDP binding to BAT mitochondria, and GDP-inhibitable, chloride-induced mitochondrial swelling. Adrenalectomy failed to arrest the development of obesity or to influence BAT metabolism in ob/ob mice fed the high-fat diet. Development of obesity in ob/ob mice fed a high-fat diet is not associated with low thermogenic capacity of BAT or with adrenal secretions, as it is in ob/ob mice fed high-carbohydrate stock diets.


Nutrition ◽  
2014 ◽  
Vol 30 (4) ◽  
pp. 473-480 ◽  
Author(s):  
Suélem Aparecida de França ◽  
Maísa Pavani dos Santos ◽  
Roger Vinícius Nunes Queiroz da Costa ◽  
Mendalli Froelich ◽  
Samyra Lopes Buzelle ◽  
...  

Nutrition ◽  
2009 ◽  
Vol 25 (11-12) ◽  
pp. 1186-1192 ◽  
Author(s):  
Suélem Aparecida de França ◽  
Maísa Pavani dos Santos ◽  
Maria Antonieta Rissato Garófalo ◽  
Luiz Carlos Navegantes ◽  
Isis do Carmo Kettelhut ◽  
...  

Lipids ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Suélem A. de França ◽  
Maísa P. dos Santos ◽  
Franciele Przygodda ◽  
Maria Antonieta R. Garófalo ◽  
Isis C. Kettelhut ◽  
...  

1990 ◽  
Vol 259 (3) ◽  
pp. E362
Author(s):  
H K Kim ◽  
D R Romsos

Adrenalectomy arrests the development of obesity in ob/ob mice fed a high-starch diet and housed at a normal room temperature (20-25 degrees C) partly by stimulating the low thermogenic activity of brown adipose tissue (BAT). The present study was undertaken to determine if adrenalectomy would also lower energy retention and stimulate BAT metabolism in ob/ob mice housed in a warm environment (35 degrees C) where BAT thermoregulatory heat production is not needed. Adrenalectomy prevented hyperphagia and hyperinsulinemia and lowered the efficiency of energy retention in ob/ob mice housed at 35 degrees C, which is comparable to results obtained at 20-25 degrees C. Sympathetic nervous system stimulation of BAT (interscapular and subscapular depots) assessed by norepinephrine turnover was increased in adrenalectomized ob/ob mice. Thermogenic activity of BAT in adrenalectomized ob/ob mice (as assessed by GDP binding to isolated BAT mitochondria, GDP-inhibitable acetate-induced BAT mitochondrial swelling, and Mg2(/)-activated GDP binding to BAT mitochondria) was not elevated when results were expressed per milligram of mitochondrial protein but was elevated approximately 65% when expressed per interscapular and subscapular depots because adrenalectomy increased BAT mitochondrial mass. Adrenalectomy lowers the efficiency of energy retention and stimulates BAT metabolism even when ob/ob mice are housed in a warm environment.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2752
Author(s):  
Kelsey A. Heenan ◽  
Andres E. Carrillo ◽  
Jacob L. Fulton ◽  
Edward J. Ryan ◽  
Jason R. Edsall ◽  
...  

Background: Brown adipose tissue (BAT) provides a minor contribution to diet-induced thermogenesis (DIT)—the metabolic response to food consumption. Increased BAT activity is generally considered beneficial for mammalian metabolism and has been associated with favorable health outcomes. The aim of the current systematic review was to explore whether nutritional factors and/or diet affect human BAT activity. Methods: We searched PubMed Central, Embase and Cochrane Library (trials) to conduct this systematic review (PROSPERO protocol: CRD42018082323). Results: We included 24 eligible papers that studied a total of 2785 participants. We found no mean differences in standardized uptake value of BAT following a single meal or after 6 weeks of L-Arginine supplementation. Resting energy expenditure (REE), however, was increased following a single meal and after supplementation of capsinoid and catechin when compared to a control condition (Z = 2.41, p = 0.02; mean difference = 102.47 (95% CI = 19.28–185.67)). Conclusions: Human BAT activity was not significantly affected by nutrition/diet. Moreover, REE was only increased in response to a single meal, but it is unlikely that this was due to increased BAT activity. BAT activity assessments in response to the chronic effect of food should be considered along with other factors such as body composition and/or environmental temperature.


1987 ◽  
Vol 252 (2) ◽  
pp. R402-R408 ◽  
Author(s):  
T. Yoshida ◽  
J. S. Fisler ◽  
M. Fukushima ◽  
G. A. Bray ◽  
R. A. Schemmel

The effects of dietary fat content, lighting cycle, and feeding time on norepinephrine turnover in interscapular brown adipose tissue, heart, and pancreas, and on blood 3-hydroxybutyrate, serum glucose, insulin, and corticosterone have been studied in two strains of rats that differ in their susceptibility to dietary obesity. S 5B/Pl rats, which are resistant to dietary obesity, have a more rapid turnover of norepinephrine in interscapular brown adipose tissue and heart and a greater increase in the concentration of norepinephrine in brown fat when eating a high-fat diet than do Osborne-Mendel rats, which are sensitive to fat-induced obesity. Light cycle and feeding schedule are important modulators of sympathetic activity in heart and pancreas but not in brown fat. Rats of the resistant strain also have higher blood 3-hydroxybutyrate concentrations and lower insulin and corticosterone levels than do rats of the susceptible strain. A high-fat diet increases 3-hydroxybutyrate concentrations and reduces insulin levels in both strains. These studies show, in rats eating a high-fat diet, that differences in norepinephrine turnover, particularly in brown adipose tissue, may play an important role in whether dietary obesity develops and in the manifestations of resistance to this phenomenon observed in the S 5B/Pl rat.


Sign in / Sign up

Export Citation Format

Share Document