dietary obesity
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 20)

H-INDEX

33
(FIVE YEARS 1)

Author(s):  
Gina N. Calco ◽  
Becky J. Proskocil ◽  
David B. Jacoby ◽  
Allison D Fryer ◽  
Zhenying Nie

Increased insulin is associated with obesity-related airway hyperreactivity and asthma. We tested whether the use of metformin, an anti-diabetic drug used to reduce insulin resistance, can reduce circulating insulin, thereby preventing airway hyperreactivity in rats with dietary obesity. Male and female rats were fed a high- or low-fat diet for 5 weeks. Some male rats were simultaneously treated with metformin (100 mg/kg, p.o.). In separate experiments, after 5 weeks of a high-fat diet, some rats were switched to a low-fat diet, while others continued a high-fat diet for an additional 5 weeks. Bronchoconstriction and bradycardia in response to bilateral electrical vagus nerve stimulation or to inhaled methacholine were measured in anesthetized and vagotomized rats. Body weight, body fat, caloric intake, fasting glucose and insulin were measured. Vagally-induced bronchoconstriction was potentiated only in male rats on a high-fat diet. Males gained more body weight, body fat, and had increased levels of fasting insulin, compared to females. Metformin prevented development of vagally-induced airway hyperreactivity in male rats on high-fat diet, in addition to inhibiting weight gain, fat gain and increased insulin. In contrast, switching rats to a low-fat diet for 5 weeks reduced body weight and body fat, it did not reverse fasting glucose, fasting insulin or potentiation of vagally-induced airway hyperreactivity. These data suggest that medications that target insulin may be effective treatment for obesity-related asthma.


Cell Reports ◽  
2021 ◽  
Vol 37 (3) ◽  
pp. 109868
Author(s):  
Zhuo Chen ◽  
Susu Pan ◽  
Kaili Yin ◽  
Yuejin Zhang ◽  
Xiaoman Yuan ◽  
...  
Keyword(s):  

Author(s):  
Sigfrid Casmir Shayo ◽  
Kazuma Ogiso ◽  
Shigeru Kawade ◽  
Hiroshi Hashiguchi ◽  
Takahisa Deguchi ◽  
...  

Author(s):  
Juan Li ◽  
Jinlie Long ◽  
Qiong Zhang ◽  
Hongyuan Shen ◽  
An-Yuan Guo ◽  
...  

Author(s):  
Benjamin P. Larkin ◽  
Long T. Nguyen ◽  
Miao Hou ◽  
Sarah J. Glastras ◽  
Hui Chen ◽  
...  

BackgroundMaternal obesity is a risk factor for chronic kidney disease (CKD) in offspring, underpinning the theory of the developmental origins of health and disease. DNA methylation has been implicated in the programming of adult chronic disease by maternal obesity, therefore, DNA demethylating agents may mitigate offspring risk of disease. In rodent models, low-dose hydralazine has previously been shown to reduce renal fibrosis via DNA demethylation. We used mouse models of maternal obesity and offspring obesity to determine whether administration of low-dose hydralazine during gestation can prevent fetal programming of CKD in offspring.MethodsFemale C57BL/6 mice received high fat diet (HFD) or chow prior to mating, during gestation and lactation. During gestation, dams received subcutaneous hydralazine (5 mg/kg) or saline thrice-weekly. Male offspring weaned to HFD or chow, which continued until endpoint at 32 weeks. Biometric and metabolic parameters, renal global DNA methylation, renal functional and structural changes, and renal markers of fibrosis, inflammation and oxidative stress were assessed at endpoint.ResultsOffspring exposed to maternal obesity or diet-induced obesity had significantly increased renal global DNA methylation, together with other adverse renal effects including albuminuria, glomerulosclerosis, renal fibrosis, and oxidative stress. Offspring exposed to gestational hydralazine had significantly reduced renal global DNA methylation. In obese offspring of obese mothers, gestational hydralazine significantly decreased albuminuria, glomerulosclerosis, and serum creatinine. Obese offspring of hydralazine-treated lean mothers displayed reduced markers of renal fibrosis and oxidative stress.ConclusionGestational hydralazine decreased renal global DNA methylation and exerted renoprotective effects in offspring. This supports a potential therapeutic effect of hydralazine in preventing maternal obesity or dietary obesity-related CKD, through an epigenetic mechanism.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
De-Huang Guo ◽  
Masaki Yamamoto ◽  
Caterina M. Hernandez ◽  
Hesam Khodadadi ◽  
Babak Baban ◽  
...  

AbstractVisceral obesity increases risk of cognitive decline in humans, but subcutaneous adiposity does not. Here, we report that beige adipocytes are indispensable for the neuroprotective and anti-inflammatory effects of subcutaneous fat. Mice lacking functional beige fat exhibit accelerated cognitive dysfunction and microglial activation with dietary obesity. Subcutaneous fat transplantation also protects against chronic obesity in wildtype mice via beige fat-dependent mechanisms. Beige adipocytes restore hippocampal synaptic plasticity following transplantation, and these effects require the anti-inflammatory cytokine interleukin-4 (IL4). After observing beige fat-mediated induction of IL4 in meningeal T-cells, we investigated the contributions of peripheral lymphocytes in donor fat. There was no sign of donor-derived lymphocyte trafficking between fat and brain, but recipient-derived lymphocytes were required for the effects of transplantation on cognition and microglial morphology. These findings indicate that beige adipocytes oppose obesity-induced cognitive impairment, with a potential role for IL4 in the relationship between beige fat and brain function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. J. P. Rautureau ◽  
B. Morio ◽  
S. Guibert ◽  
C. Lefevre ◽  
J. Perrier ◽  
...  

AbstractObesity is associated with both chronic and acute respiratory illnesses, such as asthma, chronic obstructive pulmonary disease (COPD) or increased susceptibility to infectious diseases. Anatomical but also systemic and local metabolic alterations are proposed contributors to the pathophysiology of lung diseases in the context of obesity. To bring perspective to this discussion, we used NMR to compare the obesity-associated metabolomic profiles of the lung with those of the liver, heart, skeletal muscles, kidneys, brain and serum from male C57Bl/6J mice fed with a high-fat and high-sucrose (HFHSD) diet vs. standard (SD) chow for 14 weeks. Our results showed that the lung was the second most affected organ after the liver, and that the two organs shared reduced one-carbon (1C) metabolism and increased lipid accumulation. Altered 1C metabolism was found in all organs and in the serum, but serine levels were increased only in the lung of HFHSD compared to SD. Lastly, tricarboxylic acid (TCA)-derived metabolites were specifically and oppositely regulated in the serum and kidneys but not in other organs. Collectively, our data highlighted that HFHSD induced specific metabolic changes in all organs, the lung being the second most affected organ, the main alterations affecting metabolite concentrations of the 1C pathway and, to a minor extend, TCA. The absolute metabolite quantification performed in this study reveals some metabolic specificities affecting both the liver and the lung, that may reveal common metabolic determinants to the ongoing pathological process.


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 21
Author(s):  
Jérôme Bellenger ◽  
Sandrine Bellenger ◽  
Amina Bourragat ◽  
Quentin Escoula ◽  
Pierre Weill ◽  
...  

Obesity, now considered as a real worldwide epidemic affecting more than 650 million people, is complex and mainly associated with excessive energy intake and changes in eating habits favoring the consumption of diets rich in saturated fat and sugar. This multifactorial pathology is linked to chronic low grade systemic inflammation. Indeed, a high fat diet (HFD) leads to intestinal microbiota dysbiosis increasing gut permeability (partly attributed to a downregulation of genes encoding tight junction proteins) leading to an increase in bacterial lipopolysaccharides (LPS) levels so-called metabolic endotoxemia. Studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are involved in the prevention of obesity and insulin resistance partly through synthesis of lipid mediators. While studies suggest that n-3 PUFAs are able to modulate the gut microbiota, others show no effect of n-3 treatments on intestinal homeostasis. In the present work, we showed that when fed a hypercaloric and obsogenic diet, compared with wild-type (WT) mice, fat-1 mice (with constitutive production of n-3 PUFAs) resist to dietary obesity and associated metabolic disorders, maintain an effective gut barrier function and exhibit greater phylogenic diversity. Moreover, fecal microbiota transplantation from fat-1 to WT mice reversed body weight gain, normalized glucose tolerance and intestinal permeability in association with prevention of alteration of the colon mucus layer. We can conclude that the n-3 PUFA-mediated alterations of gut microbiota contribute to the prevention of metabolic syndrome in fat-1 mice and may represent a promising strategy to prevent metabolic disease and preserve a lean phenotype.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3737
Author(s):  
Kristina Bardova ◽  
Jiri Funda ◽  
Radek Pohl ◽  
Tomas Cajka ◽  
Michal Hensler ◽  
...  

Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs—pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)—regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.


Sign in / Sign up

Export Citation Format

Share Document