Potassium secretion by nasal salt glands of desert lizard Sauromalus obesus

1987 ◽  
Vol 253 (1) ◽  
pp. R83-R90 ◽  
Author(s):  
T. J. Shuttleworth ◽  
J. L. Thompson ◽  
W. H. Dantzler

Potassium secretion by the nasal salt glands of the herbivorous desert lizard Sauromalus obesus was determined in vivo by a new technique. Intraperitoneal injection of KCl rapidly increased the potassium secretion rate from 0.28 to 15.35 mumol X 100 g-1 X h-1. A second identical intraperitoneal injection, given 15 h after the first, further increased potassium secretion to 50.09 mumol X 100 g-1 X h-1. This was associated with a doubling of plasma K+ concentration and salt gland Na+-K+-adenosinetriphosphatase (ATPase) activity. Neither salt gland weight or residual (Mg2+) ATPase activity were affected. In an isolated perfused head preparation, potassium secretion from the nasal salt glands was stimulated from 0.99 to 10.76 mumol X 100 g-1 X h-1 by methacholine and to 14.68 mumol X 100 g-1 X h-1 by forskolin. In this perfused preparation, simultaneous determination of salt gland perfusion flow (using radiolabeled microspheres) and the rate of potassium secretion revealed that the secreting glands removed 68% of the perfusing potassium ions. Calculations indicated that secretion at the maximal rate observed in vivo would necessitate a fourfold increase in the rate of blood flow to the gland.

1997 ◽  
Vol 200 (13) ◽  
pp. 1895-1904 ◽  
Author(s):  
JP Hildebrandt

Chronic salt stress in ducklings (Anas platyrhynchos) resulted in a sustained accumulation of cyclic AMP in the secretory cells of the nasal salt glands. Adaptive increases in the activity of the Na+/K+-ATPase, measured as ATP hydrolysis rates in freshly isolated tissue, were observed after 12 h of salt stress. This change in enzyme activity was associated with increases in protein abundance in the - as well as in the ss-subunit of Na+/K+-ATPase and an increase in ss-subunit glycosylation. We investigated whether the increase in the cytosolic cyclic AMP concentration and the adaptive changes in Na+/K+-ATPase activity were causally related. Using an organotypic tissue culture system for salt gland slices from unstressed (naive) ducklings, we produced similar changes in Na+/K+-ATPase activity and subunit abundance by treating cultured tissue with drugs that elevate cytosolic cyclic AMP levels (forskolin, 8-CPT-cAMP) during a 15 h culture period. Protein synthesis assays using cultured tissue revealed that elevations in cytosolic cyclic AMP level mediate increases in Na+/K+-ATPase subunit abundance by slowing down the degradation of ATPase subunits. This increase in the amount of enzyme protein was associated with a significant increase in Na+/K+-ATPase activity in tissue homogenates. The time course of these changes in cyclic-AMP-treated cultured tissue resembled that observed in salt-stressed intact animals, indicating that the elevation in cyclic AMP level in salt gland tissue may constitute a portion of the signalling events ultimately leading to the adaptive increase in Na+/K+-ATPase activity in vivo.


1981 ◽  
Vol 241 (4) ◽  
pp. G300-G305
Author(s):  
A. N. Charney ◽  
J. Wallach ◽  
S. Ceccarelli ◽  
M. Donowitz ◽  
C. L. Costenbader

Mineralocorticoid and glucocorticoid effects on colonic electrolyte absorption were compared by examining the alterations caused by spironolactone and amiloride in corticosteroid-treated rats. Animals were treated for 3 days with deoxycorticosterone acetate (DOCA; 0.5 mg . 100 g-1 . day-1), methylprednisolone (MP; 3 or 0.5 mg . 100 g-1 . day), and spironolactone (14 mg . 100 g-1 . day-1 im) singly or in combination. On day 4, rats were anesthetized with pentobarbital sodium and perfused in vivo with Ringer-HCO3 solution. Both doses of MP and DOCA increased net colonic sodium and water absorption and mucosal Na-K-ATPase activity. Concurrent spironolactone treatment completely prevented these effects in DOCA-treated rats but had no effect in MP-treated rats. Untreated, MP-treated, and DOCA-treated animals were perfused with a Ringer-HCO3 solution containing 1 mM amiloride. Amiloride reduced net colonic sodium and water absorption, transmural potential difference, and potassium secretion in all rats by approximately 55%. These effects were almost immediate and completely reversible. These findings in the rat suggest that 1) different receptors mediate the colonic effects of mineralocorticoids and glucocorticoids and 2) these corticosteroids do not differ in their relative effects on amiloride-sensitive and amiloride-resistant colonic sodium transport processes.


1970 ◽  
Vol 18 (4) ◽  
pp. 251-263 ◽  
Author(s):  
STEPHEN A. ERNST ◽  
CHARLES W. PHILPOTT

The effect of glutaraldehyde and formaldehyde fixation on the level of biochemically demonstrable Na-K-adenosine triphosphatase (Na-K-ATPase) and Mg-ATPase of avian salt glands and teleost gill filaments was studied. Sections, 100-200 µ, prepared with the Smith-Farquhar tissue chopper, were fixed for varying periods, homogenized and assayed for ATPase activity. Fixation of salt gland tissue with 0.5% glutaraldehyde for 40-60 min completely inhibited the Na-K-ATPase activity and reduced the level of Mg-ATPase by 85%. In contrast, fixation with 2 or 3% formaldehyde, prepared from paraformaldehyde, for 60-90 min resulted in a loss of only 30% of the Na-K-ATPase activity and 65% of the Mg-ATPase activity. Similar results were obtained with gill filaments. In addition, Na-K-ATPase of formaldehyde-fixed tissue retained an obligatory requirement for Na+ and K+ and was fully sensitive to ouabain. Electron microscopic examination of formaldehyde-fixed tissue, sectioned with either the tissue chopper or in the cryostat and incubated in the Wachstein-Meisel medium, showed excellent morphologic preservation. Reaction product deposition (presumably due to Mg-ATPase) was associated with the extracellular side of the plasma membrane in the secretory cells of the salt gland and over the mitochondrial matrix of chloride cells present in the gill epithelium.


1985 ◽  
Vol 248 (6) ◽  
pp. R709-R716
Author(s):  
R. J. Lowy ◽  
F. P. Conte

Larval salt glands isolated from the naupliar brine shrimp (Artemia salina) were examined using light microscopy and scanning and transmission electron microscopy. These methods demonstrated that most cellular and subcellular features of the in vitro organ compared favorably with those seen in vivo. This salt gland measures 130 micron in diameter and is comprised of 50-70 secretory cells, which are of a single epithelial cell type. Characteristic ultrastructural features that are well preserved include apical to basal cell polarity, apical plasma membrane projections, and the extent of the basolateral tubular labyrinth and its association with numerous mitochondria. Some features that have been altered are a decrease in cell-cell contact, separation of septate junctions, and expansion of tubular labyrinth lumens and mitochondrial cristae. Use of this preparation has allowed examination of the salt gland cell's hemocoelic surface for the first time and provided information about the ultrastructure of the tufts formed by the apical plasma membrane.


2020 ◽  
Vol 17 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Xueying Zhou ◽  
Zhelong Li ◽  
Wenqi Sun ◽  
Guodong Yang ◽  
Changyang Xing ◽  
...  

Background: Exosomes are cell-derived nanovesicles that play vital roles in intercellular communication. Recently, exosomes are recognized as promising drug delivery vehicles. Up till now, how the in vivo distribution of exosomes is affected by different administration routes has not been fully understood. Methods: In the present study, in vivo distribution of exosomes following intravenous and intraperitoneal injection approaches was systemically analyzed by tracking the fluorescence-labeled exosomes and qPCR analysis of C. elegans specific miRNA abundance delivered by exosomes in different organs. Results: The results showed that exosomes administered through tail vein were mostly taken up by the liver, spleen and lungs while exosomes injected intraperitoneally were more dispersedly distributed. Besides the liver, spleen, and lungs, intraperitoneal injection effectively delivered exosomes into the visceral adipose tissue, making it a promising strategy for obesity therapy. Moreover, the results from fluorescence tracking and qPCR were slightly different, which could be explained by systemic errors. Conclusion: Together, our study reveals that different administration routes cause a significant differential in vivo distribution of exosomes, suggesting that optimization of the delivery route is prerequisite to obtain rational delivery efficiency in detailed organs.


2006 ◽  
Vol 17 (7) ◽  
pp. 3281-3290 ◽  
Author(s):  
Jing Xiao ◽  
Leslie S. Kim ◽  
Todd R. Graham

The auxilin family of J-domain proteins load Hsp70 onto clathrin-coated vesicles (CCVs) to drive uncoating. In vitro, auxilin function requires its ability to bind clathrin and stimulate Hsp70 ATPase activity via its J-domain. To test these requirements in vivo, we performed a mutational analysis of Swa2p, the yeast auxilin ortholog. Swa2p is a modular protein with three N-terminal clathrin-binding (CB) motifs, a ubiquitin association (UBA) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal J-domain. In vitro, clathrin binding is mediated by multiple weak interactions, but a Swa2p truncation lacking two CB motifs and the UBA domain retains nearly full function in vivo. Deletion of all CB motifs strongly abrogates clathrin disassembly but does not eliminate Swa2p function in vivo. Surprisingly, mutation of the invariant HPD motif within the J-domain to AAA only partially affects Swa2p function. Similarly, a TPR point mutation (G388R) causes a modest phenotype. However, Swa2p function is abolished when these TPR and J mutations are combined. The TPR and J-domains are not functionally redundant because deletion of either domain renders Swa2p nonfunctional. These data suggest that the TPR and J-domains collaborate in a bipartite interaction with Hsp70 to regulate its activity in clathrin disassembly.


2007 ◽  
Vol 293 (4) ◽  
pp. L1069-L1078 ◽  
Author(s):  
Tianbo Li ◽  
Shyny Koshy ◽  
Hans G. Folkesson

To explore interactions between the epithelial Na channel (ENaC) and neural precursor expressed, developmentally downregulated protein 4-2 (Nedd4-2) at the conversion of the rat lung from fluid secretion to absorption at birth, we used small-interfering RNA (siRNA) against αENaC and Nedd4-2. siRNA-generating plasmid DNA (pDNA) was administered via trans-thoracic intrapulmonary (ttip) injection 24 h before ENaC and Nedd4-2 expression, extravascular lung water, and mortality were measured. αENaC mRNA and protein were specifically reduced by ∼65% after pSi-4 injection. Nedd4-2 mRNA and protein were reduced by ∼60% after pSi-N1 injection. Interestingly, αENaC and βENaC mRNA and protein expression were increased after Nedd4-2 silencing. Extravascular lung water was significantly increased after αENaC silencing and reduced after Nedd4-2 silencing. αENaC silencing resulted in a fourfold increase in newborn mortality, whereas silencing Nedd4-2 did not affect mortality. We also isolated distal lung epithelial (DLE) cells after in vivo αENaC or Nedd4-2 silencing and measured αENaC or Nedd4-2 expression in freshly isolated DLE cells. In these DLE cells, there were attenuated αENaC or Nedd4-2 mRNA and protein, thus demonstrating that αENaC and Nedd4-2 silencing occurred in alveolar epithelial cells after ttip injection. We also looked for pDNA by PCR to determine pDNA presence in the lungs and found strong evidence for pDNA presence in both lungs. Thus we provide evidence that ENaC and Nedd4-2 are involved in the transition from lung fluid secretion to fluid absorption near term and at birth.


2004 ◽  
Vol 24 (5) ◽  
pp. 556-563 ◽  
Author(s):  
Takatoshi Sorimachi ◽  
Thaddeus S. Nowak

Ischemic preconditioning models have been characterized in brain, heart, and other tissues, and previous pharmacologic studies have suggested an involvement of adenosine and ATP dependent potassium (KATP) channels in such tolerance phenomena. This question was reexamined in a reproducible gerbil model in which the duration of ischemic depolarization defined the severity of preconditioning and test insults. Agents studied were glibenclamide, a blocker of KATP channels; 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist; and N6-cyclopentyladenosine (CPA), an A1 agonist. Intraventricular glibenclamide injections aggravated neuron damage after brief priming insults, in parallel with a dose-dependent prolongation of ischemic depolarization. However, the depolarization thresholds for ischemic neuronal injury were identical in vehicle- and glibenclamide-treated animals, and glibenclamide did not affect preconditioning when equivalent insult severity was maintained during priming insults. Neither DPCPX nor CPA had any effect on the onset or duration of depolarization after intraperitoneal injection in this model, and neither drug affected neuron damage. In the case of CPA, it was necessary to maintain temperature for 4 to 6 hours of recirculation to avoid significant confounding hypothermia. These results fail to support a direct involvement of A1 receptors or KATP channels during early stages in the development of ischemic tolerance in vivo, and emphasize the need for robust, well-controlled, and quantitative models in such studies.


Sign in / Sign up

Export Citation Format

Share Document