A slow potassium conductance after action potential bursts in rabbit vagal C fibers

1988 ◽  
Vol 254 (3) ◽  
pp. R443-R452
Author(s):  
R. M. Siegel ◽  
R. I. Birks

Sucrose gap recordings were made from vagus nerve in rabbit to examine the mechanisms underlying the generation of the hyperpolarization that follows a burst of evoked action potentials in unmyelinated C fibers. Analysis of the posttetanic hyperpolarization was made by fitting the membrane potential changes with the sum of two exponential components. The posttetanic hyperpolarization consisted of two separable components with time constants of approximately 0.5 and 30 s. The slower exponentially decaying component was dependent on an increase in electrogenic sodium pumping as shown by the effect of ouabain and changes in extracellular chloride. The faster-decaying exponential component was caused by a potassium conductance as shown by the effect of varied extracellular potassium. This potassium conductance appears to be novel as its dynamics vary with the frequency and duration of the burst yet increases in reduced calcium. It is suggested that this slow decaying and modifiable potassium conductance can play a role in modulation of preganglionic and presynaptic action potential conduction.

1989 ◽  
Vol 62 (1) ◽  
pp. 174-184 ◽  
Author(s):  
M. O. Poulter ◽  
T. Hashiguchi ◽  
A. L. Padjen

1. Intracellular microelectrode recordings from large sensory and motor myelinated axons in spinal roots of Rana pipiens were used to study the effects of dendrotoxin (DTX), a specific blocker of a fast activating potassium current (GKf1). 2. Dendrotoxin reduced the ability of myelinated sensory and motor axons to accommodate to a constant stimulus. A depolarizing current step, which normally evoked only one action potential, after dendrotoxin treatment (200-500 nM) produced a train of action potentials. These spike trains lasted 29 +/- 2.8 (SE) ms on average in sensory fibers (n = 18) and 40.2 +/- 4.5 ms in motor fibers (n = 9). 3. After dendrotoxin treatment, in addition to a reduction in the ability to accommodate to a constant stimulus, a slowing in the rate of action potential generation was evident (spike frequency adaptation). 4. Dendrotoxin had no effect on the rising phase of conducted action potentials evoked by peripheral stimulation. Together with a lack of effect on the absolute refractory period, these results indicate that dendrotoxin does not affect sodium channel activity. 5. The steady-state voltage/current relationship was unchanged in response to hyperpolarizing current pulses; however, there was a significant increase in cord resistance in response to depolarizing current steps, demonstrating that DTX decreases outward rectification. 6. A computer model based on Hodgkin and Huxley equations was developed, which included the three voltage-dependent potassium conductances described by Dubois. The model reproduced major experimental results: removal of the conductance, termed GKf1, reduced the accommodation in the early phase of a continuous stimulus, indicating that this current could be responsible for the early accommodation. The hypothesis that the slow potassium conductance GKs regulates late accommodation and action potential frequency adaptation is also supported by the computer model. 7. In summary, these results suggest that in amphibian myelinated sensory and motor axons, the activity of potassium conductances can account for accommodation and adaptation without involvement of sodium conductance activity.


1976 ◽  
Vol 39 (6) ◽  
pp. 1184-1192 ◽  
Author(s):  
W. R. Schlue

1. The sensory neurons in the leech central nervous system differ in their accommodation to linearly rising currents. Advantage was taken of these differences to study the ionic mechanism of accommodation in single pairs of N (noxious), P (pressure), and T (touch) cells. 2. Nonlinearities in membrane-potential changes and current-voltage relationships with square-wave and ramp currents are more pronounced in P and T cells than in N cells. The accommodation coefficients increase in conditions that reflect this delayed rectification. When rectification is absent, the accommodation coefficients depart from unity only slightly or not at all. 3. Accommodation coefficients remain unchanged when half of the chloride in the bathing medium is replaced by sulfate. Accommodation coefficients become greater when the extracellular potassium concentration is reduced from 4 to 0 mM, and decrease when the concentration is raised to 8 mM. The membrane potential changes by only a few millivolts. 4. As extracellular potassium concentration is increased, the action potential is lengthened and the maximal rate of fall of the action potential is reduced. With concentrations greater than 4 mM these relationships are linear, but depart from linearity at lower concentrations. The amplitude of the undershoot decreases linearly as the extracellular potassium concentration increases from 4 to 16 mM, and increases non-linearly at concentrations below 4 mM. 5. The rapid accommodation of leech neurons is based primarily on an increased potassium conductance. The possibility is considered that concentration changes like those produced experimentally may occur naturally, affecting integrative processes in the central nervous system.


1983 ◽  
Vol 244 (3) ◽  
pp. H341-H350
Author(s):  
C. H. Conrad ◽  
R. G. Mark ◽  
O. H. Bing

We studied the effects of brief periods (20-30 min) of hypoxia in the presence of 5 and 50 mM glucose and of glycolytic blockade (10(-4) M iodoacetic acid, IAA) on action potentials, membrane currents, and mechanical activity in rat ventricular papillary muscles using a single sucrose gap voltage-clamp technique. Steady-state outward current (iss) was determined at the end of a 500-ms clamp to the test potential following a 600-ms clamp to a holding potential of -50 mV. In the presence of 5 mM glucose, hypoxia resulted in a decrease in action potential duration (APD) and an increase in iss (on the order of 60% at 0 mV) over the potential range studied. The increase in iss did not appear to be due to an increase in leakage current or to a change in the cable properties of the preparation. Addition of 50 mM glucose prevented the change in both APD and iss with hypoxia. In addition, glycolytic blockade with IAA did not alter iss in the presence of oxygen. We conclude that an increase in iss appears to be a major factor in the abbreviation of rat ventricular action potential seen with hypoxia. Glycolysis appears to be a sufficient (with 50 mM glucose) but not necessary source of energy for the maintenance of normal iss.


1988 ◽  
Vol 255 (5) ◽  
pp. H992-H999 ◽  
Author(s):  
R. Mohabir ◽  
G. R. Ferrier

The inducibility of slow-response automaticity was assessed during ischemic conditions and reperfusion by application of extracellular current. Isolated canine Purkinje fibers were depolarized to membrane potentials less than -65 mV to elicit depolarization-induced automaticity (DIA). Ischemic conditions increased the cycle length of DIA and, in some tissues, prevented sustained DIA or completely abolished DIA. The magnitude of depolarization required to elicit DIA also increased. Inhibition of DIA occurred at a time when action potential plateaus were abbreviated. The effect of reperfusion on DIA was biphasic. Initial reappearance of DIA was followed by inhibition and reduction of the membrane potential range over which DIA could be elicited. Plateaus of action potentials initiated at high membrane potential were abbreviated at this time. DIA returned again as reperfusion effects dissipated. Phasic changes in the inducibility of DIA may represent changes in availability of the slow inward current and may regulate the timing and types of arrhythmic activity occurring with ischemia and reperfusion.


1962 ◽  
Vol 45 (6) ◽  
pp. 1195-1216 ◽  
Author(s):  
Fred J. Julian ◽  
John W. Moore ◽  
David E. Goldman

A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting potential of an axon in the sucrose-gap arrangement is increased 20 to 60 mv over that recorded by a conventional micropipette electrode when the entire axon is bathed in sea water. A complete explanation for this effect has not been discovered. The relation between resting potential and external potassium and sodium ion concentrations shows that potassium carries most of the current in a depolarized axon in the sucrose-gap arrangement, but that near the resting potential other ions make significant contributions. Lowering the external chloride concentration decreases the resting potential. Varying the concentration of the sucrose solution has little effect. A study of the impedance changes associated with the action potential shows that the membrane resistance decreases to a minimum at the peak of the spike and returns to near its initial value before repolarization is complete (a normal lobster giant axon action potential does not have an undershoot). Action potentials recorded simultaneously by the sucrose-gap technique and by micropipette electrodes are practically superposable.


1964 ◽  
Vol 47 (4) ◽  
pp. 719-733 ◽  
Author(s):  
W. H. Herzog ◽  
R. M. Feibel ◽  
S. H. Bryant

In the giant axon of Loligo pealii, "aconitine potent" Merck added to the bath (10-7 to 1.25 x 10-6 gm/ml) (a) had no effect on resting membrane potential, membrane resistance and rectification, membrane response to subthreshold currents, critical depolarization, or action potential, but (b) on repetitive stimulation produced oscillations of membrane potential after the spike, depolarization, and decrease of membrane resistance. The effect sums with successive action potentials; it increases with concentration of aconitine, time of exposure, and frequency of stimulation. When the oscillations are large enough and the membrane potential is 51.6 ± SD 1.5 mv a burst of self-sustained activity begins; it usually lasts 20 to 70 sec. and at its end the membrane potential is 41.5 ± SD 1.9 mv. Repolarization occurs with a time constant of 2.5 to 11.1 min. Substitution of choline for external sodium after a burst hyperpolarizes the membrane to -70 mv, and return to normal external sodium depolarizes again beyond the resting membrane potential. The effect of aconitine on the membrane is attributed to an increase of sodium and potassium or chloride conductances following the action potential.


1968 ◽  
Vol 21 (1) ◽  
pp. 37 ◽  
Author(s):  
L Munk ◽  
E PGeorge

A mathematical model for the action potential in Purkinje fibres is developed. It is based on voltage-clamp results which show that inactivation of sodium current in these muscles is much slower than in squid axon and that the latent rise in potassium conductance is not present. Both the sodium and the potassium conductances are represented as a sum of slow and fast components. This is incorporated in the suitably adjusted Hodgkin-Huxley model for the squid axon. It is shown that such a model can account satisfactorily for the shape of the action potentials in Purkinje fibres.


1978 ◽  
Vol 71 (1) ◽  
pp. 47-67 ◽  
Author(s):  
D J Miller ◽  
A Mörchen

Resting and action potentials were recorded from superfused strips of frog ventricle. Reducing the bathing calcium concentration ([Ca2+]0) with or without ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA) prolongs the action potential (AP). The change in the duration of the AP extends over many minutes, but is rapidly reversed by restoring calcium ions. Other changes (e.g., in resting potential and overshoot) are, however, only more slowly reversed. Reducing [Ca2+]0 with 0.2, 2, or 5 mM EGTA produces progressively greater prolongation of AP; maximum values were well in excess of 1 min. This prolongation can be reversed by other divalent cations in EGTA (Mg2+, Sr2+) or Ca-free (Mn2+) solutions, or by acetylcholine. Barium ions increase AP duration in keeping with their known effect on potassium conductance. D600, which blocks the slow inward current in cardiac muscle, is without effect on the action potentials recorded in EGTA solutions, or on the time course and extent of the recovery to normal duration upon restoring calcium ions. It is concluded that divalent cations exert an influence on membrane potassium conductance extracellularly in frog heart. The cell membrane does not become excessively "leaky" in EGTA solutions.


1979 ◽  
Vol 81 (1) ◽  
pp. 93-112
Author(s):  
R. W. Meech

Membrane potential oscillations can be induced in molluscan neurones under a variety of artificial conditions. In the so-called ‘burster’ neurones oscillations are generated even in isolated cells. A likely mechanism for ‘bursting’ involves the following ionic currents: 1. A transient inward current carried by Na+ and Ca2+. This current is responsible for the upstroke of the action potentials. 2. A delayed outward current carried by K+. This current is voltage-sensitive and is responsible for the downstroke of the action potential during the early part of the burst. It becomes progressively inactivated during the burst. Its amplitude depends on the intracellular pH. 3. A rapidly developing outward current carried by K+ which is inactivated at potentials close to action potential threshold. This current tends to hold the membrane in the hyperpolarized state and is involved in spacing the action potentials. 4. A prolonged inward current which may not inactivate. It is probably carried by both Na+ and Ca2+. This current is responsible for the depolarizing phase of the burst but also contributes to the action potential. 5. A slowly developing outward current, carried by K+. This current appears as a result of a slow increase in intracellular ionized calcium and is responsible for the hyperpolarizing phase of the burst. Note that a transient increase in this current may also contribute to the falling phase of the action potential during the later stages of the burst. It is also sensitive to intracellular pH. One of the more significant features of this system of producing membrane potential oscillations is that the frequency of the bursts depends on the rate at which the intracellular ionized calcium returns to its resting level. This process depends on the metabolic state of the animal which can thereby exert a considerable influence on the electrical activity of burster neurones.


1989 ◽  
Vol 61 (4) ◽  
pp. 769-779 ◽  
Author(s):  
N. Uchimura ◽  
H. Higashi ◽  
S. Nishi

1. The membrane properties and synaptic responses of guinea pig nucleus accumbens neurons in vitro were studied with intracellular recording methods. 2. The population of neurons could be divided into groups of low (20-60 M omega, average 46.5 M omega) and high (60-180 M omega, average 96.5 M omega) input resistance. The resting membrane potential in both groups was approximately -70 mV. 3. Other membrane properties were quite similar in both groups. Inward rectification occurred at potentials more negative than -80 mV; this was blocked by Cs+ (2 mM). Membrane potential oscillations were observed at potentials between -65 and -55 mV; these were blocked by tetrodotoxin (TTX, 0.5 microM). Outward rectification occurred at potentials less negative than -45 mV; this was depressed by tetraethylammonium (TEA, 10 mM). 4. Action potentials elicited by small depolarizing current pulses (2-5 ms, 0.3-0.5 nA) were approximately 95 mV in amplitude and 1.0 ms in duration. The afterhyperpolarization following each action potential was less than 30 ms in duration, and no accommodation of action-potential discharge was seen at frequencies up to 40 Hz. The action potentials were reversibly blocked by TTX (0.3 microM). In addition, TTX-insensitive, Ca2+-dependent spikes were evoked by passing larger and more prolonged current pulses (greater than 40 ms, greater than 0.5 nA) across the membrane. 5. Focal electrical stimulation of the slice surface with low intensity (1 ms, less than 10 V) elicited excitatory postsynaptic potentials (EPSPs) in neurons of both high- and low-resistance groups. The reversal potential (+10.2 mV) for the EPSPs was close to the reversal potential (+7.7 mV) of the responses to glutamate applied in the superfusing solution. The N-methyl-D-aspartic acid (NMDA) receptor antagonists, D-alpha-aminoadipic acid (1 mM) and DL-2-amino-5-phosphonovaleric acid (DL-APV, 250 microM), reversibly depressed the EPSP; the glutamate uptake inhibitor, L-aspartic acid-beta-hydroxamate (50 microM), or removal of Mg2+ from the superfusate, augmented the EPSP. 6. When the intensity of the focal stimulus was increased (1 ms, greater than or equal to 10 V), a second larger depolarizing response (duration, 800 ms to 2 s) could be evoked in addition to the smoothly graded EPSP. This was seen only in cells of the high-resistance group (90-130 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document