Orally administered L-arginine does not alter right ventricular hypertrophy in chronically hypoxic rats

1994 ◽  
Vol 266 (2) ◽  
pp. R559-R563 ◽  
Author(s):  
T. C. Resta ◽  
B. R. Walker

Evidence suggests that nitric oxide synthesis within the pulmonary circulation may be attenuated during chronic hypoxia in Wistar rats due to reduced L-arginine availability. In contrast, chronically hypoxic Sprague-Dawley rats exhibit normal endothelium-dependent pulmonary vasodilation. The purpose of the present study was to determine whether 1) Wistar rats demonstrate greater right ventricular (RV) hypertrophy in response to chronic hypoxia than Sprague-Dawley rats and 2) chronic administration of L-arginine would diminish this response in Wistar rats. L-Arginine had no effect on the degree of hypoxia-induced RV hypertrophy or polycythemia in either strain of rat. However, Wistar rats demonstrated greater hypoxia-induced RV hypertrophy and polycythemia compared with Sprague-Dawley rats. To determine whether chronically hypoxic Wistar rats indeed exhibit impaired endothelium-dependent pulmonary vasodilation, isolated lungs from control and chronically hypoxic Wistar rats were administered the endothelium-dependent pulmonary vasodilators A23187 or vasopressin. Vasodilatory responses to either agent were unaffected by chronic hypoxic exposure. We conclude that endothelium-dependent pulmonary vasodilation is maintained in the pulmonary circulation of chronically hypoxic Wistar and Sprague-Dawley rats.

1992 ◽  
Vol 72 (6) ◽  
pp. 2354-2363 ◽  
Author(s):  
L. C. Ou ◽  
J. Chen ◽  
E. Fiore ◽  
J. C. Leiter ◽  
T. Brinck-Johnsen ◽  
...  

Hilltop (H) and Madison (M) strains of Sprague-Dawley rats exhibit strikingly different susceptibilities to the effects of chronic altitude exposure. The H rats develop greater polycythemia, hypoxemia, and pulmonary hypertension. We studied ventilation, pulmonary gas exchange, tissue oxygenation, and hematologic adaptations in the two rat strains during a 50-day exposure to a simulated altitude (HA) of 5,500 m (18,000 ft). There were no strain differences among the variables we studied under sea level (SL) conditions. Within the first 14 days of hypoxic exposure, the only significant strain differences were that erythropoietin (EPO) rose much higher and erythroid activity was greater in the H rats, even though arterial Po2 and PCo2 (Pao2 and PaCo2, respectively), renal venous PO2 (Prvo2), and ventilation (VE) were equivalent in the two strains during this time. By day 14 at HA, the H rats had significantly higher erythroid activity, hematocrit (Hct), and EPO levels, significantly lower PaO2 and PrvO2, but equivalent VE and PaCO2. These changes persisted for the remainder of the exposure, except that the Hct continued to rise and the increase was greater in H rats. Despite the greater O2-carrying capacity of H rats in the later stages of hypoxic exposure, PaO2 and PrvO2 were significantly lower in H rats. There were no strain differences at either SL or HA in ventilatory responses to hypercapnia or hypoxia, in blood O2 affinity or 2,3-diphosphoglycerate, in extrarenal production of EPO, or in EPO clearance. We conclude that early in the hypoxic exposure the H rats produce more EPO at apparently equivalent levels of hypoxia, and this is the first step in the pathogenesis of the maladaptation to HA manifest by H rats. We find no consistent evidence that differences in VE contribute to the variable susceptibility to hypoxia in the two rat strains.


1993 ◽  
Vol 74 (1) ◽  
pp. 339-344 ◽  
Author(s):  
R. D. Russ ◽  
B. R. Walker

We have previously demonstrated that arginine vasopressin (AVP) dilates the preconstricted pulmonary vasculature via the release of nitric oxide (NO). However, recent evidence suggests that NO release in response to other agents may be suppressed in lungs from animals that have been chronically exposed to hypoxia. The purpose of the present experiment was to determine whether vasopressinergic pulmonary vasodilation is similarly affected by chronic exposure to hypoxia (barometric pressure = 380 Torr for 4 wk). Inhibition of NO synthesis with N omega-nitro-L-arginine (L-NNA) had no effect on baseline perfusion pressure in isolated salt-perfused lungs from either control or chronically hypoxic rats. Similarly, pulmonary vasodilatory responses to AVP and the calcium ionophore A23187 were unaffected by chronic hypoxic exposure. Pretreatment with the cyclooxygenase inhibitor meclofenamate did not alter vasopressinergic pulmonary vasodilation in lungs from either control or chronically hypoxic animals, ruling out involvement of vasodilator prostaglandins in the response to AVP. In contrast, vasodilatory responses to both AVP and A23187 were inhibited by L-NNA pretreatment not only in lungs from control animals but also in lungs from chronically hypoxic rats, suggesting the involvement of NO in the vasodilatory response. The inhibition by L-NNA was reversible by prior addition of excess L-arginine but not by D-arginine. In addition, vasodilatory responses to the endothelium-independent vasodilators sodium nitroprusside and isoproterenol were unaffected by chronic hypoxic exposure. We conclude that endothelium-dependent vasodilation remains intact in male Sprague-Dawley rats after chronic hypoxic exposure.


2017 ◽  
Vol 313 (4) ◽  
pp. H828-H838 ◽  
Author(s):  
Joshua R. Sheak ◽  
Laura Weise-Cross ◽  
Ray J. deKay ◽  
Benjimen R. Walker ◽  
Nikki L. Jernigan ◽  
...  

Augmented vasoconstrictor reactivity is thought to play an important role in the development of chronic hypoxia (CH)-induced neonatal pulmonary hypertension. However, whether this response to CH results from pulmonary endothelial dysfunction and reduced nitric oxide (NO)-mediated vasodilation is not well understood. We hypothesized that neonatal CH enhances basal tone and pulmonary vasoconstrictor sensitivity by limiting NO-dependent pulmonary vasodilation. To test this hypothesis, we assessed the effects of the NO synthase (NOS) inhibitor Nω-nitro-l-arginine (l-NNA) on baseline pulmonary vascular resistance (PVR) and vasoconstrictor sensitivity to the thromboxane mimetic U-46619 in saline -perfused lungs (in situ) from 2-wk-old control and CH (12-day exposure, 0.5 atm) Sprague-Dawley rats. Basal tone was defined as that reversed by exogenous NO (spermine NONOate). CH neonates displayed elevated right ventricular systolic pressure (in vivo) and right ventricular hypertrophy, indicative of pulmonary hypertension. Perfused lungs from CH rats demonstrated greater baseline PVR, basal tone, and U-46619-mediated vasoconstriction compared with control rats in the absence of l-NNA. l-NNA markedly increased baseline PVR and reactivity to U-46619 in lungs from CH neonates, further augmenting vasoconstrictor sensitivity compared with control lungs. Exposure to CH also enhanced NO-dependent vasodilation to arginine vasopressin, pulmonary expression of NOS III [endothelial NOS (eNOS)], and eNOS phosphorylation at activation residue Ser1177. However, CH did not alter lung nitrotyrosine levels, a posttranslational modification reflecting [Formula: see text] scavenging of NO. We conclude that, in contrast to our hypothesis, enhanced basal tone and agonist-induced vasoconstriction after neonatal CH is limited by increased NO-dependent pulmonary vasodilation resulting from greater eNOS expression and phosphorylation at activation residue Ser1177. NEW & NOTEWORTHY This research is the first to demonstrate enhanced nitric oxide-dependent vasodilation that limits increased vasoconstrictor reactivity in neonatal pulmonary hypertension. These results suggest that augmented vasoconstriction in this setting reflects changes in smooth muscle reactivity rather than a reduction in nitric oxide-dependent pulmonary vasodilation.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Investigation of the spontaneous pituitary adenomas in rat have been limited mainly to light microscopic study. Furth et al. (1973) described them as chromophobic, secreting prolactin. Kovacs et al. (1977) in an ul trastructural investigation of adenomas of old female Long-Evans rats, found that they were composed of prolactin cells. Berkvens et al. (1980) using immunocytochemistry at the light microscopic level, demonstrated that some spontaneous tumors of old Wistar rats could contain GH, TSH or ACTH as well as PRL.


Author(s):  
G. Ilse ◽  
K. Kovacs ◽  
N. Ryan ◽  
T. Sano ◽  
L. Stefaneanu ◽  
...  

Germfree state and food restriction have been shown to increase life span and delay tumor occurrence in rats. We report here the histologic, immunocytochemical and electron microscopic findings of adenohypophyses of aging, male Lobund-Wistar rats raised at Lobund Laboratories. In our previous study, the morphologic changes in the adenohypophyses of old rats have been extensively investigated by histology, immunocytochemistry and electron microscopy. Lactotroph adenomas were frequent in Long-Evans and Sprague-Dawley rats, whereas gonadotroph adenomas were frequent in Sprague-Dawley and Wistar rats.Male Lobund-Wistar rats were divided into four groups: 1) conventional, which were raised under normal non-germfree environment and received food ad libitum; 2) germfree-food ad libitum; 3) conventional environment-food restricted and 4) germfree-food restricted. The adenohypophyses were removed from 6-month-, 18-month- and 30-month-old rats. For light microscopy, adenohypophyses were fixed in formalin and embedded in paraffin.


2007 ◽  
Vol 292 (6) ◽  
pp. H2737-H2744 ◽  
Author(s):  
Masahito Kajiya ◽  
Masanori Hirota ◽  
Yousuke Inai ◽  
Takahiko Kiyooka ◽  
Taro Morimoto ◽  
...  

Pulmonary hypertension (PH) causes right ventricular (RV) hypertrophy and, according to the extent of pressure overload, eventual heart failure. We tested the hypothesis that the mechanical stress in PH-RV impairs the vasoreactivity of the RV coronary microvessels of different sizes with increased superoxide levels. Five-week-old male Sprague-Dawley rats were injected with monocrotaline ( n = 126) to induce PH or with saline as controls ( n = 114). After 3 wk, coronary arterioles (diameter = 30–100 μm) and small arteries (diameter = 100–200 μm) in the RV were visualized using intravital videomicroscopy. We evaluated ACh-induced vasodilation alone, in the presence of Nω-nitro-l-arginine methyl ester (l-NAME), in the presence of tetraethylammonium (TEA) or catalase with or without l-NAME, and in the presence of SOD. The degree of suppression in vasodilation by l-NAME and TEA was used as indexes of the contributions of endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), respectively. In PH rats, ACh-induced vasodilation was significantly attenuated in both arterioles and small aretries, especially in arterioles. This decreased vasodilation was largely attributable to reduced NO-mediated vasoreactivity, whereas the EDHF-mediated vasodilation was relatively robust. The suppressive effect on arteriolar vasodilation by catalase was similar to TEA in both groups. Superoxide, as measured by lucigenin chemiluminescence, was significantly elevated in the RV tissues in PH. SOD significantly ameliorated the impairment of ACh-induced vasodilation in PH. Robust EDHF function will play a protective role in preserving coronary microvascular homeostasis in the event of NO dysfunction with increased superoxide levels.


2020 ◽  
Vol 14 (8) ◽  
pp. 308-315
Author(s):  
Tohidul Amin Mohammad ◽  
Fatema Kaniz ◽  
karmakar Palash ◽  
Abdur Rahman Md. ◽  
Haque Tazmel ◽  
...  

1990 ◽  
Vol 258 (1) ◽  
pp. F41-F45
Author(s):  
P. C. Churchill ◽  
N. F. Rossi ◽  
M. C. Churchill ◽  
A. K. Bidani ◽  
F. D. McDonald

Both acute and chronic administration of cyclosporine A (CSA) lead to renal vasoconstriction, but the mechanism is not fully understood. The present studies were designed to explore the possible role of adenosine in acute CSA-induced renal vasoconstriction in rats. Six groups of anesthetized Sprague-Dawley rats were studied using standard clearance techniques: group 1 rats were controls; groups 2, 4, and 6 received CSA intravenously at 20, 30, and 40 mg.h-1.kg body wt-1, respectively; groups 3 and 5 were identical to groups 2 and 4 except that a priming injection of theophylline was given (56 mumol/kg body wt) and theophylline was included in the intravenous infusate (0.56 mumol.min-1.kg body wt-1). CSA produced acute and concentration-dependent reductions in renal plasma flow (left kidney) and in the clearances of p-aminohippuric acid and inulin (both kidneys). Except in group 6, these changes were observed in the absence of a decrease in arterial blood pressure, demonstrating that CSA produced an acute and concentration-dependent increase in renovascular resistance. Theophylline not only failed to block CSA-induced renal vasoconstriction, if anything, it potentiated it. Because theophylline is an adenosine receptor antagonist, these findings contradict the hypothesis that adenosine mediates acute CSA-induced renal vasoconstriction.


1965 ◽  
Vol 16 (2) ◽  
pp. 531-536 ◽  
Author(s):  
Morton H. Kleban

Forty-three Sprague-Dawley and 43 Wistar rats were given reward training for 40 trials in a Y-maze. On the next 20 trials, control groups were continued under the same training procedure, and 50% shock trials were introduced in the training of the remaining rats. For the extinction training, the reward was shifted to the opposite arm and 50% shock was continued for the no-delay and 30-sec. delay shock groups. The most significant results were that in the 30-sec. delay groups, the delay helped the Sprague-Dawley rats reverse in a minimum number of trials, whereas the Wistar rats showed strong indications of response stereotypy. The findings with respect to the Sprague-Dawley rats supported the empirical evidence on the effectiveness of delay in overcoming response persistence and the findings on the Wistar rats supported the empirical evidence on omission in punishment. The difference in response to punishment between the two albino strains emphasizes the need for experimental study of strain factors. Experiments should be repeated with several animal strains to remedy over-generalization from single strains and to help elaborate our understanding of the interaction present between punishment and strains.


1984 ◽  
Vol 57 (6) ◽  
pp. 1760-1766 ◽  
Author(s):  
J. S. Kerr ◽  
D. J. Riley ◽  
M. M. Frank ◽  
R. L. Trelstad ◽  
H. M. Frankel

We administered antifibrotic agent beta-aminopropionitrile (BAPN) to rats exposed to 10% O2-90% N2 for 3 wk to prevent excess vascular collagen accumulation. Groups of Sprague-Dawley rats studied were air breathing, hypoxic, and hypoxic treated with BAPN, 150 mg/kg twice daily intraperitoneally. After the 3-wk period, we measured mean right ventricular pressure (RVP), the ratio of weight of right ventricle to left ventricle plus septum (RV/LV + S), and hydroxyproline content of the main pulmonary artery (PA) trunk. Hypoxia increased RVP from 14 to 29 mmHg; RVP was 21 mmHg in hypoxic BAPN-treated animals. Hypoxia increased the RV/LV + S ratio from 0.28 to 0.41; the ratio was 0.32 in hypoxic BAPN-treated animals. Hypoxia increased PA hydroxyproline from 20 to 239 micrograms/artery; hydroxyproline was 179 micrograms/artery in hypoxic BAPN-treated animals. Thus BAPN prevented pulmonary hypertension, right ventricular hypertrophy, and excess vascular collagen produced by hypoxia. We conclude that vascular collagen contributes to the maintenance of chronic hypoxic pulmonary hypertension.


Sign in / Sign up

Export Citation Format

Share Document