Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem

1994 ◽  
Vol 267 (4) ◽  
pp. R974-R983 ◽  
Author(s):  
B. J. Yates ◽  
L. Grelot ◽  
I. A. Kerman ◽  
C. D. Balaban ◽  
J. Jakus ◽  
...  

The vestibular system is involved in maintaining stable blood pressure and respiration during changes in posture and is essential for eliciting motion sickness-related vomiting. Because the nucleus tractus solitarius (NTS) participates in the regulation of sympathetic and inspiratory outflow and the triggering of emesis, we tested the hypothesis that this region receives vestibular inputs in cats. In one set of experiments, microinjections of the tracer Phaseolus vulgaris leucoagglutinin into the medial and inferior vestibular nuclei labeled projections to the middle and lateral regions of the NTS. In electrophysiological experiments, electrical stimulation of the vestibular nerve modified the firing rates of neurons located in the same regions. Some neurons with vestibular inputs received convergent signals from the abdominal vagus nerve and could potentially mediate motion sickness-related vomiting. Others received convergent baroreceptor inputs and could act as a substrate for some components of vestibulosympathetic reflexes. In contrast, inspiratory neurons in the dorsal respiratory group received little vestibular input, suggesting that vestibulorespiratory reflexes are mediated by cells located elsewhere.

1995 ◽  
Vol 74 (1) ◽  
pp. 428-436 ◽  
Author(s):  
K. Endo ◽  
D. B. Thomson ◽  
V. J. Wilson ◽  
T. Yamaguchi ◽  
B. J. Yates

1. To investigate the type of vestibular signals that neurons in the caudal parts of the vestibular nuclei transmit to the cerebellum and spinal cord, we studied their responses to natural vestibular stimulation in vertical planes in decerebrate cats with the caudal cerebellum removed. Most neurons were in the caudal half of the descending vestibular nucleus, the remainder at corresponding levels of the medial nucleus or the medial-descending border. 2. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal tilts delivered at 0.05-1 Hz near the plane of body rotation that produced maximal modulation of the neuron's activity (response vector orientation). For most neurons the predominant vestibular input could be identified as coming from otolith organs (46%) or vertical semicircular canals (37%). Some neurons had otolith+canal convergence (9%) and others either had such converging input or some other form of central processing (8%). 3. Gain and phase of the responses of otolith neurons were comparable with values obtained in earlier studies on Deiters' nucleus and the rostral descending nucleus. Many canal neurons had a steeper gain slope and more advanced phase than observed previously for more rostral neurons. This may be due to more irregular afferent input to many neurons or to the absence of the vestibulocerebellum. 4. Response vector orientations of canal neurons were closely bunched near the planes of the ipsilateral vertical canals. The small number of contralaterally projecting vectors showed evidence of convergence between the two contralateral vertical canals. As is the case elsewhere in the vestibular nuclei, there was no evidence of convergence from bilateral vertical canals. Response vector orientations of otolith neurons were restricted to the roll quadrants; the majority pointed ipsilaterally. 5. Antidromic stimulation with an electrode in the restiform body or with several electrodes in the dorsal half of the white matter of the upper cervical cord was used to identify neurons projecting to the cerebellum and spinal cord, respectively. A substantial number of spontaneously firing neurons projected to the cerebellum, but there were few spontaneously active vestibulospinal neurons. The properties of the vestibular input to cerebellar-projecting neurons were the same as those of the population as a whole, but the effect of tilt on vestibulospinal neurons appeared weak or absent. 6. Many neurons were inhibited by stimulation of the restiform body. We suggest that this is mainly due to stimulation of the axons of vestibulocerebellar Purkinje cells. 7. Our results demonstrate a robust vertical vestibular input to the caudal parts of the vestibular nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 92 (1-2) ◽  
pp. 45-55 ◽  
Author(s):  
Awa N'Diaye ◽  
Caroline Sévoz-Couche ◽  
Anne Nosjean ◽  
Michel Hamon ◽  
Raul Laguzzi

1999 ◽  
Vol 82 (1) ◽  
pp. 188-201 ◽  
Author(s):  
Zhongzeng Li ◽  
Kendall F. Morris ◽  
David M. Baekey ◽  
Roger Shannon ◽  
Bruce G. Lindsey

This study addresses the hypothesis that multiple sensory systems, each capable of reflexly altering breathing, jointly influence neurons of the brain stem respiratory network. Carotid chemoreceptors, baroreceptors, and foot pad nociceptors were stimulated sequentially in 33 Dial-urethan–anesthetized or decerebrate vagotomized adult cats. Neuronal impulses were monitored with microelectrode arrays in the rostral and caudal ventral respiratory group (VRG), nucleus tractus solitarius (NTS), and n. raphe obscurus. Efferent phrenic nerve activity was recorded. Spike trains of 889 neurons were analyzed with cycle-triggered histograms and tested for respiratory-modulated firing rates. Responses to stimulus protocols were assessed with peristimulus time and cumulative sum histograms. Cross-correlation analysis was used to test for nonrandom temporal relationships between spike trains. Spike-triggered averages of efferent phrenic activity and antidromic stimulation methods provided evidence for functional associations of bulbar neurons with phrenic motoneurons. Spike train cross-correlograms were calculated for 6,471 pairs of neurons. Significant correlogram features were detected for 425 pairs, including 189 primary central peaks or troughs, 156 offset peaks or troughs, and 80 pairs with multiple peaks and troughs. The results provide evidence that correlational medullary assemblies include neurons with overlapping memberships in groups responsive to different sets of sensory modalities. The data suggest and support several hypotheses concerning cooperative relationships that modulate the respiratory motor pattern. 1) Neurons responsive to a single tested modality promote or limit changes in firing rate of multimodal target neurons. 2) Multimodal neurons contribute to changes in firing rate of neurons responsive to a single tested modality. 3) Multimodal neurons may promote responses during stimulation of one modality and “limit” changes in firing rates during stimulation of another sensory modality. 4) Caudal VRG inspiratory neurons have inhibitory connections that provide negative feedback regulation of inspiratory drive and phase duration.


1996 ◽  
Vol 76 (3) ◽  
pp. 1896-1903 ◽  
Author(s):  
Y. Uchino ◽  
M. Sasaki ◽  
H. Sato ◽  
M. Imagawa ◽  
H. Suwa ◽  
...  

1. Intracellular recordings of synaptic potentials in extraocular motoneurons were studied to determine the connectivities between the utricular nerve and the extraocular motoneurons in cats. 2. Stimulating electrodes were placed within the left utricular nerve, while other branches of the vestibular nerve were removed. Subsequently, the N1 field potentials evoked by utricular nerve stimulation were recorded in the vestibular nuclei. The potential typically grew until reaching a plateau (submaximal stimulation). Stimulus spread to the other nerve branches appeared as an additional increase in N1 amplitude after the plateau discontinued (supramaximal stimulation). 3. Intracellular recordings were made from 200 identified motoneurons in the bilateral III, IV, and VI cranial nuclei. 4. Stimulation of the utricular nerve at submaximal intensity evoked a longer latency depolarizing and hyperpolarizing potentials in contra- and ipsilateral medial rectus motoneurons, respectively. Complex potentials with longer latencies also were recorded in ipsilateral inferior oblique and contralateral trochlear motoneurons after stimulation of the utricular nerve at a submaximal intensity. Monosynaptic and disynaptic connections between the utricular nerve and ipsilateral abducens motoneurons and interneurons were recorded as described previously. 5. The results of the present study confirm our initial findings that a disynaptic pathway from the utricular nerve to contralateral trochlear motoneurons is absent or very poorly developed, whereas polysynaptic circuits from the utricular nerve to inferior oblique and trochlear motoneurons may play a role in eye rotation during head tilt.


1994 ◽  
Vol 76 (3) ◽  
pp. 1293-1301 ◽  
Author(s):  
D. R. Karius ◽  
L. Ling ◽  
D. F. Speck

This study tested the hypothesis that excitatory amino acid (EAA) neurotransmission at non-N-methyl-D-aspartate (non-NMDA), but not NMDA, receptors within medial regions of the nucleus tractus solitarius (NTS) is required in the inspiratory termination elicited by vagal or intercostal nerve (ICN) stimulation. Adult cats were anesthetized, decerebrated, vagotomized, and ventilated. After control responses to stimulation of the superior laryngeal nerve (SLN), vagus, and ICN were obtained, EAA receptor antagonists were injected into the medial aspects of the NTS. Injections of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 6,7-dinitro-quinoxaline-2,3-dione (DNQX), EAA receptor antagonists; (+/-)-2-amino-5-phosphonopentanoic acid (AP5), an NMDA antagonist; or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), a non-NMDA antagonist, ipsilateral to the vagus abolished the termination response. The SLN-elicited response persisted after AP5 injection but was abolished by NBQX injections. The ICN-elicited response persisted after bilateral injections of CNQX/DNQX or procaine. We conclude that the inspiratory termination elicited by ICN stimulation is independent of the regions medial to the NTS. Inspiratory termination elicited by vagal or SLN stimulation requires non-NMDA-mediated EAA neurotransmission within medial aspects of the NTS, but the vagally elicited response also requires NMDA receptors.


1980 ◽  
Vol 238 (1) ◽  
pp. R57-R64 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

Experiments were done in cats anesthetized with chloralose, paralyzed and artificially ventilated cats to obtain electrophysiological evidence on the medullary site of origin of vagal cardioinhibitory fibers. The regions of the nucleus ambiguus (AMB), dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarius (NTS), and external cuneate nucleus (ECN) were systematically explored for units responding both to antidromic stimulation of the cardiac branches of the vagus (CBV) and to orthodromic stimulation of the carotid sinus and aortic depressor nerves. Eighty-six single units conforming to these criteria were found in the medulla: 30 in the AMB, 26 in the DMV, 12 in the NTS, 8 in the NTS-DMV border region, and 10 in the ECN. Antidromically evoked spikes had durations of 0.5--2.5 ms and followed stimulation frequencies of 20--500 Hz. The axons of these units conducted at velocities of 3.3--20.8 m/s. The specificity of activation of medullary units by cardioinhibitory fibers was tested in 11 units, which were found to respond consistently with an antidromic spike to stimulation of CBV but not to stimulation of the thoracic vagus. In eight spinal animals low threshold (less than 15 microA) sites eliciting vagal bradycardia were found in the same medullary nuclei where cardioinhibitory units had been located. These results indicate that vagal cardioinhibitory axons, originate in at least three medullary nuclei, the AMB, DMV, and NTS. Unit activity from the ECN may have been recorded from carioinhibitory fibers because of the short duration of the spike potentials.


Sign in / Sign up

Export Citation Format

Share Document