Neural control of glucose uptake by skeletal muscle after central administration of NMDA

1995 ◽  
Vol 268 (2) ◽  
pp. R492-R497 ◽  
Author(s):  
C. H. Lang ◽  
M. Ajmal ◽  
A. G. Baillie

Intracerebroventricular injection of N-methyl-D-aspartate (NMDA) produces hyperglycemia and increases whole body glucose uptake. The purpose of the present study was to determine in rats which tissues are responsible for the elevated rate of glucose disposal. NMDA was injected intracerebroventricularly, and the glucose metabolic rate (Rg) was determined for individual tissues 20-60 min later using 2-deoxy-D-[U-14C]glucose. NMDA decreased Rg in skin, ileum, lung, and liver (30-35%) compared with time-matched control animals. In contrast, Rg in skeletal muscle and heart was increased 150-160%. This increased Rg was not due to an elevation in plasma insulin concentrations. In subsequent studies, the sciatic nerve in one leg was cut 4 h before injection of NMDA. NMDA increased Rg in the gastrocnemius (149%) and soleus (220%) in the innervated leg. However, Rg was not increased after NMDA in contralateral muscles from the denervated limb. Data from a third series of experiments indicated that the NMDA-induced increase in Rg by innervated muscle and its abolition in the denervated muscle were not due to changes in muscle blood flow. The results of the present study indicate that 1) central administration of NMDA increases whole body glucose uptake by preferentially stimulating glucose uptake by skeletal muscle, and 2) the enhanced glucose uptake by muscle is neurally mediated and independent of changes in either the plasma insulin concentration or regional blood flow.

2009 ◽  
Vol 297 (2) ◽  
pp. E402-E409 ◽  
Author(s):  
Hoon Ki Sung ◽  
Yong-Woon Kim ◽  
Soo Jeong Choi ◽  
Jong-Yeon Kim ◽  
Kyung Hee Jeune ◽  
...  

To test whether chronic enhanced blood flow alters insulin-stimulated glucose uptake, we measured skeletal muscle glucose uptake in chow-fed and high-fat-fed mice injected with adenovirus containing modified angiopoietin-1, COMP-Ang1, via euglycemic-hyperinsulinemic clamp. Blood flow rates and platelet endothelial cell adhesion molecule-1 positive endothelial cells in the hindlimb skeletal muscle were elevated in COMP-Ang1 compared with control LacZ. Whole body glucose uptake and whole body glycogen/lipid synthesis were elevated in COMP-Ang1 compared with LacZ in chow diet. High-fat diet significantly reduced whole body glucose uptake and whole body glycolysis in LacZ mice, whereas high-fat-fed COMP-Ang1 showed a level of whole body glucose uptake that was comparable with chow-fed LacZ and showed increased glucose uptake compared with high-fat-fed LacZ. Glucose uptake and glycolysis in gastrocnemius muscle of chow-fed COMP-Ang1 were increased compared with chow-fed LacZ. High-fat diet-induced whole body insulin resistance in the LacZ was mostly due to ∼40% decrease in insulin-stimulated glucose uptake in skeletal muscle. In contrast, COMP-Ang1 prevented diet-induced skeletal muscle insulin resistance compared with high-fat-fed LacZ. Akt phosphorylation in skeletal muscle was increased in COMP-Ang1 compared with LacZ in both chow-fed and high-fat-fed groups. These results suggest that increased blood flow by COMP-Ang1 increases insulin-stimulated glucose uptake and prevents high-fat diet-induced insulin resistance in skeletal muscle.


1998 ◽  
Vol 94 (2) ◽  
pp. 175-180 ◽  
Author(s):  
R. Butler ◽  
A.D. Morris ◽  
A. D. Struthers

1. Recent evidence shows that skeletal muscle blood flow is an important determinant of insulin sensitivity and that insulin-mediated vasodilatation is nitric oxide dependent. These results have given rise to the hypothesis that endothelial nitric oxide inhibition may decrease insulin sensitivity in humans. 2. We examined this hypothesis directly by evaluating the effects of systemic nitric oxide synthase inhibition with NG-monomethyl l-arginine (3 mg h−1 kg−1) on whole-body glucose uptake (euglycaemic hyperinsulinaemic clamp) and calf blood flow (bilateral calf venous occlusion plethysmography) in 16 healthy male subjects in a randomized, double-blind, placebo-controlled, crossover study. 3. NG-Monomethyl l-arginine infusion was associated with a pressor effect (119/61 ± 2/2 compared with 114/58 ± 2/2 mmHg for placebo; P < 0.001), and a negative chronotropic response (57 ± 2 compared with 62 ± 2 beats/min for placebo; P < 0.001). The glucose infusion rate was significantly increased after infusion of NG-monomethyl l-arginine (8.9 ± 0.9 compared with 7.9 ± 0.8 mg min−1 kg−1 for placebo; P = 0.002). Whole-body glucose uptake increased during the clamp, with values of 9.4 ± 0.7 and 10.9 ± 0.8 mg min−1 kg−1 for placebo and NG-monomethyl l-arginine respectively (P = 0.036; 95% confidence interval 0.2,2.8). NG-Monomethyl l-arginine was associated with increased calf blood flow by comparison with placebo (P < 0.05, area under curve). 4. These data show for the first time that systemic inhibition of nitric oxide synthesis increases rather than decreases whole-body glucose uptake. We suggest that the higher skeletal muscle blood flow seen after NG-monomethyl l-arginine may explain the observed increase in whole-body glucose uptake.


2011 ◽  
Vol 301 (2) ◽  
pp. E342-E350 ◽  
Author(s):  
A. J. Genders ◽  
E. A. Bradley ◽  
S. Rattigan ◽  
S. M. Richards

There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min−1·kg−1) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.


2020 ◽  
Author(s):  
Ada Admin ◽  
Solvejg L. Hansen ◽  
Kirstine N. Bojsen-Møller ◽  
Anne-Marie Lundsgaard ◽  
Frederikke L. Hendrich ◽  
...  

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle improving glucose uptake and metabolism in both healthy and type 2 diabetic individuals. In the present study, lean, hyperandrogenic women with PCOS (n=9) and healthy controls (CON, n=9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole body insulin action by 26% and insulin-stimulated leg glucose uptake by 53%, together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in maximal oxygen uptake. In skeletal muscle of CON, but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose handling proteins for insulin-stimulated glucose uptake in skeletal muscle, and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


1988 ◽  
Vol 66 (1) ◽  
pp. 101-105 ◽  
Author(s):  
P. Kubes ◽  
C. K. Chapler ◽  
S. M. Cain

Redistribution of blood flow away from resting skeletal muscle does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p < 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p < 0.05) during anemia and was decreased (p < 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p < 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct. The data indicate that (i) maximal sympathetic stimulation produced a significant decrease in both skeletal muscle and hindlimb blood flow during anemia, (ii) the reduction in blood flow in these areas was less with sympathetic stimulation during anemia than at normal Hct., and (iii) the anemic stimulus (Hct. = 14%) does not activate maximal sympathetic vasoconstrictor tone in the skeletal muscle.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


1983 ◽  
Vol 61 (2) ◽  
pp. 178-182 ◽  
Author(s):  
C. K. Chapler ◽  
S. M. Cain

The metabolic and cardiovascular adjustments of the whole body and skeletal muscle were studied during moderate and severe acute anemia. In 15 anesthetized dogs, venous outflow from the gastrocnemius–plantaris muscle group was isolated. Cardiac output [Formula: see text], muscle blood flow [Formula: see text], total body and muscle oxygen uptake [Formula: see text] were determined during a control period, and at 30 and 60 min of either (i) moderate anemia (n = 8) in which the mean hematocrit (Hct) was 25% or (ii) progressive anemia (n = 7) in which the mean Hct values were 25% at 30 min and 16% at 60 min of anemia. Muscle [Formula: see text], [Formula: see text], and [Formula: see text] were increased in both groups at 30 min of anemia. By 60 min, [Formula: see text] and [Formula: see text] declined to preanemic control values in the moderate anemia group; whole body [Formula: see text] was maintained at the control level. Arterial oxygen transport was the same in the two groups at both 30 and 60 min of anemia despite the difference in Hct at 60 min. Muscle [Formula: see text] showed a further and similar rise in both groups between 30 and 60 min of anemia. These data show that the rise in muscle [Formula: see text] during acute anemia was not directly proportional to the degree of the hematocrit reduction. Further, the findings suggest that the muscle [Formula: see text] response was related to the decrease in arterial oxygen transport.


2003 ◽  
Vol 285 (1) ◽  
pp. E123-E129 ◽  
Author(s):  
M. A. Vincent ◽  
E. J. Barrett ◽  
J. R. Lindner ◽  
M. G. Clark ◽  
S. Rattigan

We examined the effects of inhibiting nitric oxide synthase with Nω-nitro-l-arginine-methyl ester (l-NAME) on total hindlimb blood flow, muscle microvascular recruitment, and hindlimb glucose uptake during euglycemic hyperinsulinemia in vivo in the rat. We used two independent methods to measure microvascular perfusion. In one group of animals, microvascular recruitment was measured using the metabolism of exogenously infused 1-methylxanthine (1-MX), and in a second group contrast-enhanced ultrasound (CEU) was used. Limb glucose uptake was measured by arterial-venous concentration differences after 2 h of insulin infusion. Saline alone did not alter femoral artery flow, glucose uptake, or 1-MX metabolism. Insulin (10 mU·min-1·kg-1) significantly increased hindlimb total blood flow (0.69 ± 0.02 to 1.22 ± 0.11 ml/min, P < 0.05), glucose uptake (0.27 ± 0.05 to 0.95 ± 0.08 μmol/min, P < 0.05), 1-MX uptake (5.0 ± 0.5 to 8.5 ± 1.0 nmol/min, P < 0.05), and skeletal muscle microvascular volume measured by CEU (10.0 ± 1.6 to 15.0 ± 1.2 video intensity units, P < 0.05). Addition of l-NAME to insulin completely blocked the effect of insulin on both total limb flow and microvascular recruitment (measured using either 1-MX or CEU) and blunted glucose uptake by 40% ( P < 0.05). We conclude that insulin specifically recruits flow to the microvasculture in skeletal muscle via a nitric oxide-dependent pathway and that this may be important to insulin's overall action to regulate glucose disposal.


2004 ◽  
Vol 97 (2) ◽  
pp. 731-738 ◽  
Author(s):  
Gail D. Thomas ◽  
Steven S. Segal

Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research.


Sign in / Sign up

Export Citation Format

Share Document