Physiological and cytokine responses in IL-1 beta-deficient mice after zymosan-induced inflammation

1997 ◽  
Vol 273 (1) ◽  
pp. R400-R406 ◽  
Author(s):  
G. Fantuzzi ◽  
S. Sacco ◽  
P. Ghezzi ◽  
C. A. Dinarello

Interleukin (IL)-1 beta-deficient (IL-1 beta -/-) mice exhibited decreased zymosan-induced lethality and reduced production of IL-6 compared with wild-type controls (IL-1 beta +/+). In addition, IL-1 beta -/- mice had a diminished cellular infiltrate (33%) in the peritoneal cavity after zymosan. However, anorexia and hypoglycemia were not affected by the lack of IL-1 beta. The induction of corticosterone was only slightly reduced (14%) in IL-1 beta -/- mice. Peritoneal lavage fluid levels for IL-1 alpha, but not for tumor necrosis factor (TNF)-alpha, were also decreased. To evaluate the role of residual IL-1 alpha production in IL-1 beta -/- mice, we used IL-1-receptor antagonist (IL-1ra). In IL-1 beta +/+ mice, IL-1ra inhibited production of IL-6 after zymosan, without affecting TNF-alpha synthesis. There was no further inhibitory effect of IL-1ra on IL-6 production in IL-1 beta -/- mice, suggesting no role for IL-1 alpha in zymosan-induced IL-6. Our results demonstrate that IL-1 beta plays a significant, although not exclusive, role in the physiological and cytokine responses to zymosan-mediated inflammation.

2012 ◽  
Vol 113 (9) ◽  
pp. 1476-1485 ◽  
Author(s):  
Ming Zhu ◽  
Alison S. Williams ◽  
Lucas Chen ◽  
Allison P. Wurmbrand ◽  
Erin S. Williams ◽  
...  

The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe fat mice that were either sufficient or genetically deficient in TNFR1 ( Cpe fat and Cpe fat/TNFR1−/− mice) and in lean mice that were either sufficient or genetically deficient in TNFR1 [wild-type (WT) and TNFR1−/− mice]. Compared with lean WT mice, Cpe fat mice exhibited airway hyperresponsiveness. Airway hyperresponsives was also greater in Cpe fat/TNFR1−/− than in Cpe fat mice. Compared with WT mice, Cpe fat mice had increases in bronchoalveolar lavage fluid concentrations of several inflammatory moieties including eotaxin, IL-9, IP-10, KC, MIG, and VEGF. These factors were also significantly elevated in Cpe fat/TNFR1−/− vs. TNFR1−/− mice. Additional moieties including IL-13 were also elevated in Cpe fat/TNFR1−/− vs. TNFR1−/− mice but not in Cpe fat vs. WT mice. IL-17A mRNA expression was greater in Cpe fat/TNFR1−/− vs. Cpe fat mice and in TNFR1−/− vs. WT mice. Analysis of serum indicated that obesity resulted in systemic as well as pulmonary inflammation, but TNFR1 deficiency had little effect on this systemic inflammation. Our results indicate that TNFR1 is protective against the airway hyperresponsiveness associated with obesity and suggest that effects on pulmonary inflammation may be contributing to this protection.


1997 ◽  
Vol 186 (12) ◽  
pp. 1997-2004 ◽  
Author(s):  
Mitsuru Matsumoto ◽  
Yang-Xin Fu ◽  
Hector Molina ◽  
Guangming Huang ◽  
Jinho Kim ◽  
...  

In mice deficient in either lymphotoxin α (LT-α) or type I tumor necrosis factor receptor (TNFR-I), organized clusters of follicular dendritic cells (FDC) and germinal centers (GC) are absent from the spleen. We investigated the role of LT-α and TNFR-I in the establishment of spleen FDC and GC structure by using reciprocal bone marrow (BM) transfer. When LT-α–deficient mice were reconstituted with wild-type BM, FDC organization and the ability to form GC were restored, indicating that the LT-α–expressing cells required to establish organized FDC are derived from BM. The role of LT-α in establishing organized FDC structure was further investigated by the transfer of complement receptor 1 and 2 (CR1/2)–deficient BM cells into LT-α–deficient mice. Organized FDC were identified with both the FDC-M1 and anti-CR1 monoclonal antibodies in these BM-chimeric mice, indicating that these cells were derived from the LT-α–deficient recipient. Thus, expression of LT-α in the BM-derived cells, but not in the non–BM-derived cells, is required for the maturation of FDC from non-BM precursor cells. In contrast, when TNFR-I–deficient mice were reconstituted with wild-type BM, they showed no detectable FDC clusters or GC formation. This indicates that TNFR-I expression on non–BM-derived cellular components is necessary for the establishment of these lymphoid structures. TNFR-I–deficient BM was able to restore FDC organization and GC formation in LT-α–deficient mice, indicating that formation of these structures does not require TNFR-I expression on BM-derived cells. The data in this study demonstrate that FDC organization and GC formation are controlled by both LT-α–expressing BM-derived cells and by TNFR-I-expressing non–BM-derived cells.


2002 ◽  
Vol 283 (1) ◽  
pp. R218-R226 ◽  
Author(s):  
Alexander V. Gourine ◽  
Valery N. Gourine ◽  
Yohannes Tesfaigzi ◽  
Nathalie Caluwaerts ◽  
Fred Van Leuven ◽  
...  

α2-Macroglobulin (α2M) is not only a proteinase inhibitor in mammals, but it is also a specific cytokine carrier that binds pro- and anti-inflammatory cytokines implicated in fever, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). To define the role of α2M in regulation of febrile and cytokine responses, wild-type mice and mice deficient in α2M (α2M −/−) were injected with lipopolysaccharide (LPS). Changes in body temperature as well as plasma levels of IL-1β, IL-6, and TNF-α and hepatic TNF-α mRNA level during fever in α2M −/− mice were compared with those in wild-type control mice. The α2M −/− mice developed a short-term markedly attenuated (ANOVA, P < 0.05) fever in response to LPS (2.5 mg/kg ip) compared with the wild-type mice. At 1.5 h after injection of LPS, the plasma concentration of TNF-α, but not IL-1β or IL-6, was significantly lower (by 58%) in the α2M −/− mice compared with their wild-type controls (ANOVA, P < 0.05). There was no difference in hepatic TNF-α mRNA levels between α2M −/− and wild-type mice 1.5 h after injection of LPS. These data support the hypotheses that 1) α2M is important for the normal development of LPS-induced fever and 2) a putative mechanism of α2M involvement in fever is through the inhibition of TNF-α clearance. These findings indicate a novel physiological role for α2M.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Julie C. Williams ◽  
Rebecca D. Lee ◽  
Claire M. Doerschuk ◽  
Nigel Mackman

Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.


2004 ◽  
Vol 72 (6) ◽  
pp. 3237-3244 ◽  
Author(s):  
Lone Dons ◽  
Emma Eriksson ◽  
Yuxuan Jin ◽  
Martin E. Rottenberg ◽  
Krister Kristensson ◽  
...  

ABSTRACT The flagellum protein flagellin of Listeria monocytogenes is encoded by the flaA gene. Immediately downstream of flaA, two genes, cheY and cheA, encoding products with homology to chemotaxis proteins of other bacteria, are located. In this study we constructed deletion mutants with mutations in flaA. cheY, and cheA to elucidate their role in the biology of infection with L. monocytogenes. The ΔcheY, ΔcheA, and double-mutant ΔcheYA mutants, but not ΔflaA mutant, were motile in liquid media. However, the ΔcheA mutant had impaired swarming and the ΔcheY and ΔcheYA mutants were unable to swarm on soft agar plates, suggesting that cheY and cheA genes encode proteins involved in chemotaxis. The ΔflaA, ΔcheY, ΔcheA, and ΔcheYA mutants (grown at 24°C) showed reduced association with and invasion of Caco-2 cells compared to the wild-type strain. However, spleens from intragastrically infected BALB/c and C57BL/6 mice showed larger and similar numbers of the ΔflaA and ΔcheYA mutants, respectively, compared to the wild-type controls. Such a discrepancy could be explained by the fact that tumor necrosis factor receptor p55 deficient mice showed dramatically exacerbated susceptibility to the wild-type but unchanged or only slightly increased levels of the ΔflaA or ΔcheYA mutant. In summary, we show that listerial flaA. cheY, and cheA gene products facilitate the initial contact with epithelial cells and contribute to effective invasion but that flaA could also be involved in the triggering of immune responses.


2001 ◽  
Vol 193 (5) ◽  
pp. 631-636 ◽  
Author(s):  
Akemi Matsushima ◽  
Tsuneyasu Kaisho ◽  
Paul D. Rennert ◽  
Hiroyasu Nakano ◽  
Kyoko Kurosawa ◽  
...  

Both nuclear factor (NF)-κB–inducing kinase (NIK) and inhibitor of κB (IκB) kinase (IKK) have been implicated as essential components for NF-κB activation in response to many external stimuli. However, the exact roles of NIK and IKKα in cytokine signaling still remain controversial. With the use of in vivo mouse models, rather than with enforced gene-expression systems, we have investigated the role of NIK and IKKα in signaling through the type I tumor necrosis factor (TNF) receptor (TNFR-I) and the lymphotoxin β receptor (LTβR), a receptor essential for lymphoid organogenesis. TNF stimulation induced similar levels of phosphorylation and degradation of IκBα in embryonic fibroblasts from either wild-type or NIK-mutant mice. In contrast, LTβR stimulation induced NF-κB activation in wild-type mice, but the response was impaired in embryonic fibroblasts from NIK-mutant and IKKα-deficient mice. Consistent with the essential role of IKKα in LTβR signaling, we found that development of Peyer's patches was defective in IKKα-deficient mice. These results demonstrate that both NIK and IKKα are essential for the induction of NF-κB through LTβR, whereas the NIK–IKKα pathway is dispensable in TNFR-I signaling.


1995 ◽  
Vol 181 (2) ◽  
pp. 669-675 ◽  
Author(s):  
K Ley ◽  
D C Bullard ◽  
M L Arbonés ◽  
R Bosse ◽  
D Vestweber ◽  
...  

Leukocyte recruitment into inflammatory sites is initiated by a reversible transient adhesive contact with the endothelium called leukocyte rolling, which is thought to be mediated by the selectin family of adhesion molecules. Selectin-mediated rolling precedes inflammatory cell emigration, which is significantly impaired in both P- and L-selectin gene-deficient mice. We report here that approximately 13% of all leukocytes passing venules of the cremaster muscle of wild-type mice roll along the endothelium at &lt; 20 min after surgical dissection. Rolling leukocyte flux fraction reaches a maximum of 28% at 40-60 min and returns to 13% at 80-120 min. In P-selectin-deficient mice, rolling is absent initially and reaches 5% at 80-120 min. Rolling flux fraction in L-selectin-deficient mice is similar to wild type initially and declines to 5% at 80-120 min. In both wild-type and L-selectin-deficient mice, initial leukocyte rolling (0-60 min) is completely blocked by the P-selectin monoclonal antibody (mAb) RB40.34, but unaffected by L-selectin mAb MEL-14. Conversely, rolling at later time points (60-120 min) is inhibited by mAb MEL-14 but not by mAb RB40.34. After treatment with tumor necrosis factor (TNF)-alpha for 2 h, approximately 24% of all passing leukocytes roll in cremaster venules of wild-type and P-selectin gene-deficient mice. Rolling in TNF-alpha-treated mice is unaffected by P-selectin mAb or E-selectin mAb 10E9.6. By contrast, rolling in TNF-alpha-treated P-selectin-deficient mice is completely blocked by L-selectin mAb. These data show that P-selectin is important during the initial induction of leukocyte rolling after tissue trauma. At later time points and in TNF-alpha-treated preparations, rolling is largely L-selectin dependent. Under the conditions tested, we are unable to find evidence for involvement of E-selectin in leukocyte rolling in mice.


1997 ◽  
Vol 272 (6) ◽  
pp. L1053-L1058 ◽  
Author(s):  
C. G. Irvin ◽  
Y. P. Tu ◽  
J. R. Sheller ◽  
C. D. Funk

To determine the role of 5-lipoxygenase products in the development of airway reactivity that follows antigen exposure, we sensitized mice by intraperitoneal injection of ovalbumin and aluminum hydroxide and serial exposure to aerosols of ovalbumin. Mice lacking a functioning 5-lipoxygenase enzyme were produced by targeted gene disruption. They and their wild-type controls had measurements of lung resistance (RL) made in response to intravenous methacholine; bronchoalveolar lavage fluid cell counts and serum immunoglobulin concentrations were also measured. Wild-type mice developed striking increases in cholinergic responsiveness; 5-lipoxygenase-deficient mice manifested minimal alterations in methacholine responsiveness (RL at the highest methacholine dose was 9.9 +/- 2.4 cmH2O.ml-1.s-1 under control conditions vs. 27.6 +/- 4.6 cmH2O.ml-1.s-1 after ovalbumin in wild-type mice; 5.9 +/- 0.9 vs. 7.01 +/- 2.2 cmH2O.ml-1.s-1 in 5-lipoxygenase-deficient mice). Ovalbumin provoked airway eosinophilia and increased immunoglobulins in wild-type mice, which were present to a significantly lesser degree in 5-lipoxygenase-deficient mice. We conclude that 5-lipoxygenase products are essential for the production of nonspecific airway reactivity in mice and suggest that 5-lipoxygenase products may be important in immunoglobulin formation.


2000 ◽  
Vol 68 (7) ◽  
pp. 3822-3829 ◽  
Author(s):  
Pierre Francois Piguet ◽  
Chen Da Laperrousaz ◽  
Christian Vesin ◽  
Fabienne Tacchini-Cottier ◽  
Giorgio Senaldi ◽  
...  

ABSTRACT We explored the role of urokinase and tissue-type plasminogen activators (uPA and tPA), as well as the uPA receptor (uPAR; CD87) in mouse severe malaria (SM), using genetically deficient (−/−) mice. The mortality resulting from Plasmodium berghei ANKA infection was delayed in uPA−/− and uPAR−/−mice but was similar to that of the wild type (+/+) in tPA−/− mice. Parasitemia levels were similar in uPA−/−, uPAR−/−, and +/+ mice. Production of tumor necrosis factor, as judged from the plasma level and the mRNA levels in brain and lung, was markedly increased by infection in both +/+ and uPAR−/− mice. Breakdown of the blood-brain barrier, as evidenced by the leakage of Evans Blue, was similar in +/+ and uPAR−/− mice. SM was associated with a profound thrombocytopenia, which was attenuated in uPA−/− and uPAR−/− mice. Administration of aprotinin, a plasmin antagonist, also delayed mortality and attenuated thrombocytopenia. Platelet trapping in cerebral venules or alveolar capillaries was evident in +/+ mice but absent in uPAR−/− mice. In contrast, macrophage sequestration in cerebral venules or alveolar capillaries was evident in both +/+ and uPAR−/− mice. Polymorphonuclear leukocyte sequestration in alveolar capillaries was similar in +/+ and uPAR−/− mice. These results demonstrate that the uPAR deficiency attenuates the severity of SM, probably by its important role in platelet kinetics and trapping. These results therefore suggest that platelet sequestration contributes to the pathogenesis of SM.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2930-2937 ◽  
Author(s):  
Y Zhang ◽  
A Harada ◽  
H Bluethmann ◽  
JB Wang ◽  
S Nakao ◽  
...  

Murine bone marrow cells with lineage phenotypes (Lin)-Sca-1+c-kit+ and Lin-Sca-1-c-kit+ cells represent primitive hematopoietic stem cells (HSCs) and committed hematopoietic progenitor cells, respectively. The number of Lin-Sca-1+c-kit+ HSCs in bone marrow was significantly increased in tumor necrosis factor (TNF) receptor p55-deficient (TNF-R55–1-) mice compared with the TNF-R55+/+ wild-type mice without a marked change in bone marrow cellularity. In both the methylcellulose culture and a single-cell proliferation assay, mouse TNF alpha (mTNF alpha) inhibited in vitro the proliferation of wild-type mouse-derived Lin-Sca-1+c-kit+ cells in response to a combination of multiple growth factors. The same is true for that of Lin-Sca-1+c-kit+ cells stimulated with granulocyte colony-stimulating factor (G-CSF) plus stem cell factor (SCF). Moreover, mTNF alpha significantly arrested the entry into S-phase from G0/G1 phase of Lin-Sca-1+c-kit+ cells stimulated with multiple growth factors and Lin-Sca-1-c-kit+ cells stimulated with G-CSF plus SCF. In contrast, mTNF alpha failed to affect the growth and cell cycle progression of Lin-Sca-1+c-kit+ cells and Lin-Sca-1-c-kit+ cells that were obtained from TNF-R55-deficient mice. These data suggest that TNF may be an important physiologic regulator of hematopoiesis and that TNF-R55 may be essentially involved in TNF-mediated inhibition of the growth of both primitive stem and more committed progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document