5-Lipoxygenase products are necessary for ovalbumin-induced airway responsiveness in mice

1997 ◽  
Vol 272 (6) ◽  
pp. L1053-L1058 ◽  
Author(s):  
C. G. Irvin ◽  
Y. P. Tu ◽  
J. R. Sheller ◽  
C. D. Funk

To determine the role of 5-lipoxygenase products in the development of airway reactivity that follows antigen exposure, we sensitized mice by intraperitoneal injection of ovalbumin and aluminum hydroxide and serial exposure to aerosols of ovalbumin. Mice lacking a functioning 5-lipoxygenase enzyme were produced by targeted gene disruption. They and their wild-type controls had measurements of lung resistance (RL) made in response to intravenous methacholine; bronchoalveolar lavage fluid cell counts and serum immunoglobulin concentrations were also measured. Wild-type mice developed striking increases in cholinergic responsiveness; 5-lipoxygenase-deficient mice manifested minimal alterations in methacholine responsiveness (RL at the highest methacholine dose was 9.9 +/- 2.4 cmH2O.ml-1.s-1 under control conditions vs. 27.6 +/- 4.6 cmH2O.ml-1.s-1 after ovalbumin in wild-type mice; 5.9 +/- 0.9 vs. 7.01 +/- 2.2 cmH2O.ml-1.s-1 in 5-lipoxygenase-deficient mice). Ovalbumin provoked airway eosinophilia and increased immunoglobulins in wild-type mice, which were present to a significantly lesser degree in 5-lipoxygenase-deficient mice. We conclude that 5-lipoxygenase products are essential for the production of nonspecific airway reactivity in mice and suggest that 5-lipoxygenase products may be important in immunoglobulin formation.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Julie C. Williams ◽  
Rebecca D. Lee ◽  
Claire M. Doerschuk ◽  
Nigel Mackman

Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 663-663
Author(s):  
John M. Joslin ◽  
Anthony A. Fernald ◽  
Zhijian Qian ◽  
John D. Crispino ◽  
Michelle M. Le Beau

Abstract Loss of a whole chromosome 5 or a deletion of the long arm of this chromosome, del(5q), is observed in 10% of patients with a myelodysplastic syndrome (MDS) or acute myeloid leukemia arising de novo, and in 40% of patients with therapy-related MDS or AML (t-MDS/t-AML). To identify a leukemia-related gene on chromosome 5, we previously delineated a 970 kb segment of 5q that is deleted in all patients examined, and prepared a genomic contig and transcript map of this region. Mutation analysis of 20 candidate genes within the commonly deleted segment did not reveal inactivating mutations in the remaining alleles, nor was there evidence of transcriptional silencing via DNA methylation. These observations are compatible with a haploinsufficiency model in which loss of one allele of the relevant gene(s) perturbs cell fate. One candidate gene is EGR1, which encodes a zinc finger transcription factor that is a member of the WT1 family of transcription factors. EGR1 has been shown to regulate hematopoietic cytokine levels (IL3, GM-CSF). Mouse embryo fibroblasts that are null or hemizygous for Egr1 bypass senescence and have apparently immortalized growth characteristics, consistent with loss of a tumor suppressor gene. Subsequent studies revealed that Egr1 is a transcriptional activator of both the p53 and p21Cip1/Waf1 genes during the stress response as well as during senescence, thereby representing a critical mechanism for controlling proliferation, growth arrest, differentiation, and apoptosis. Loss of Egr1 function may allow hematopoietic stem cells to bypass p53-mediated senescence or apoptosis, thereby contributing to leukemogenesis. To evaluate the role of Egr1 in hematopoiesis, we obtained Egr1+/− mice from J. Milbrandt (Washington University). Egr1−/− mice are viable, with mild post-natal growth retardation and infertility. Complete blood counts and body weight were collected for wild-type, Egr1+/−, and Egr1−/− mice every 6 weeks over the course of one year. The Egr1−/− mice display elevated white blood cell counts, elevated lymphocytes, and decreased neutrophil counts, and are unable to maintain normal RBC counts, Hb, and Hct as compared to wild-type and heterozygous mice. To examine the role of Egr1 in erythropoiesis, we evaluated the erythropoietic response to phenylhydrazine-induced hemolytic anemia by treating Egr-1-deficient mice with standard doses of phenylhydrazine (60 mg/kg). Egr1+/− and Egr1−/− mice were unable to respond to the anemia and died with 2 days of the treatment, whereas wild type mice recovered fully within 12 days of the treatment. Egr1-deficient mice treated with N-nitroso-N-ethylurea (ENU), a potent DNA alkylating agent, develop MDS or T cell lymphoma. Egr1-deficient mice developed lymphomas at an increased frequency and rate compared to wild-type animals, indicating that Egr1 cooperates with other mutations in the genesis of hematopoietic neoplasms. MDS was seen only in the Egr1-deficient mice, and is characterized by elevated white blood cell counts, anemia, and thrombocytopenia, with ineffective erythropoiesis in the bone marrow and spleen. Together, these results suggest a role for Egr1 in murine erythropoiesis and implicate EGR1 in the development of myeloid leukemias characterized by abnormalities of chromosome 5.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 344-344
Author(s):  
Marcin Wysoczynski ◽  
Janina Ratajczak ◽  
Gregg Rokosh ◽  
Roberto Bolli ◽  
Mariusz Z Ratajczak

Abstract Abstract 344 Background: Stromal derived factor-1 (SDF-1), which binds to the CXCR4 receptor expressed on the surface of hematopoietic stem/progenitor cells (HSPCs), plays an important role in the retention of HSPCs in BM niches. Heme oxygenase (HO-1) is a stress-responsive enzyme that catalyzes the degradation of heme and plays an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury, atherosclerosis, and cancer. Interestingly, it has also been reported that HO-1 regulates the expression of SDF-1 in myocardium (J Mol Cell Cardiol. 2008;45:44–55). Aim of study: Since SDF-1 plays a crucial role in retention and survival of HSPCs in BM, we become interested in whether HO-1 is expressed by BM stromal cells and whether deficiency of HO-1 affects normal hematopoiesis and retention of HSPCs in BM. Experimental approach: To address this issue, we employed several complementary strategies to investigate HO-1–/–, HO-1+/–, and wild type (wt) mouse littermates for i) the expression level of SDF-1 in BM, ii) the number of clonogenic progenitors from major hematopoietic lineages in BM, iii) peripheral blood (PB) cell counts, iv) the chemotactic responsiveness of HSPCs to an SDF-1 gradient as well as to other chemoattractants, including sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and extracellular nucleotiodes (ATP, UTP), iv) the adhesiveness of clonogenic progenitors to immobilized SDF-1 and stroma, v) the number of circulating HSPCs in PB, and vi) the degree of mobilization in response to granulocyte-colony stimulating factor (G-CSF) or AMD3100, assessed by enumerating the number of CD34–SKL cells and clonogeneic progenitors (CFU-GM) circulating in PB. We also exposed mice to the small HO-1 molecular inhibitor tin protoporphyrin IX (SnPP) and studied the effect of this treatment on G-CSF- or AMD3100-induced mobilization of HSPCs. Finally, to prove an environmental HSPC retention defect in HO-1-deficient mice, we created radiation chimeras, wild type mice transplanted with HO-1-deficient BM cells, and, vice versa, HO-1-deficient mice reconstituted with wild type BM cells. Results: Our data indicate that under normal, steady-state conditions, HO-1–/– and HO+/– mice have normal PB cell counts and numbers of circulating CFU-GM, while a lack of HO-1 leads to an increase in the number of erythroid (BFU-E) and megakaryocytic (CFU-GM) progenitors in BM. However, while BMMNCs from HO-1–/– have normal expression of the SDF-1-binding receptor, CXCR4, we observed that the mRNA level for SDF-1 in BM-derived fibroblasts was ∼4 times lower. This corresponded with the observation in vitro that HSPCs from HO-1–/– animals respond more robustly to an SDF-1 gradient, and HO-1–/– animals mobilized a higher number of CD34–SKL cells and CFU-GM progenitors into PB in response to G-CSF and AMD3100. Both G-CSF and AMD3100 mobilization were also significantly enhanced in normal wild type mice after in vivo administration of HO-1 inhibitor. Finally, mobilization studies in irradiation chimeras confirmed the crucial role of the microenvironmental SDF-1-based retention mechanism of HSPCs in BM niches. Conclusions: Our data demonstrate for the first time that HO-1 plays an important and underappreciated role in modulating the SDF-1 level in the BM microenvironment and thus plays a role in retention of HSPCs in BM niches. Furthermore, our recent data showing a mobilization effect by a small non-toxic molecular inhibitor of HO-1 (SnPP), suggest that blockage of HO-1 could be a promising strategy to facilitate mobilization of HSPCs. Further studies are also needed to evaluate the role of HO-1 in homing of HSPCs after transplantation to BM stem cell niches. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 273 (1) ◽  
pp. R400-R406 ◽  
Author(s):  
G. Fantuzzi ◽  
S. Sacco ◽  
P. Ghezzi ◽  
C. A. Dinarello

Interleukin (IL)-1 beta-deficient (IL-1 beta -/-) mice exhibited decreased zymosan-induced lethality and reduced production of IL-6 compared with wild-type controls (IL-1 beta +/+). In addition, IL-1 beta -/- mice had a diminished cellular infiltrate (33%) in the peritoneal cavity after zymosan. However, anorexia and hypoglycemia were not affected by the lack of IL-1 beta. The induction of corticosterone was only slightly reduced (14%) in IL-1 beta -/- mice. Peritoneal lavage fluid levels for IL-1 alpha, but not for tumor necrosis factor (TNF)-alpha, were also decreased. To evaluate the role of residual IL-1 alpha production in IL-1 beta -/- mice, we used IL-1-receptor antagonist (IL-1ra). In IL-1 beta +/+ mice, IL-1ra inhibited production of IL-6 after zymosan, without affecting TNF-alpha synthesis. There was no further inhibitory effect of IL-1ra on IL-6 production in IL-1 beta -/- mice, suggesting no role for IL-1 alpha in zymosan-induced IL-6. Our results demonstrate that IL-1 beta plays a significant, although not exclusive, role in the physiological and cytokine responses to zymosan-mediated inflammation.


1997 ◽  
Vol 186 (8) ◽  
pp. 1357-1364 ◽  
Author(s):  
Joseph P. Mizgerd ◽  
Hiroshi Kubo ◽  
Gregory J. Kutkoski ◽  
Sabrina D. Bhagwan ◽  
Karin Scharffetter-Kochanek ◽  
...  

To determine the role of CD11/CD18 complexes in neutrophil emigration, inflammation was induced in the skin, lungs, or peritoneum of mutant mice deficient in CD18 (CD18−/− mutants). Peripheral blood of CD18−/− mutants contained 11-fold more neutrophils than did blood of wild-type (WT) mice. During irritant dermatitis induced by topical application of croton oil, the number of emigrated neutrophils in histological sections of dermis was 98% less in CD18−/− mutants than in WT mice. During Streptococcus pneumoniae pneumonia, neutrophil emigration in CD18−/− mutants was not reduced. These data are consistent with expectations based on studies using blocking antibodies to inhibit CD11/CD18 complexes, and on observations of humans lacking CD11/CD18 complexes. The number of emigrated neutrophils in lung sections during Escherichia coli pneumonia, or in peritoneal lavage fluid after 4 h of S. pneumoniae peritonitis, was not reduced in CD18−/− mutants, but rather was greater than the WT values (240 ± 30 and 220 ± 30% WT, respectively). Also, there was no inhibition of neutrophil emigration during sterile peritonitis induced by intraperitoneal injection of thioglycollate (90 ± 20% WT). These data contrast with expectations. Whereas CD11/CD18 complexes are essential to the dermal emigration of neutrophils during acute dermatitis, CD18−/− mutant mice demonstrate surprising alternative pathways for neutrophil emigration during pneumonia or peritonitis.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4080-4085 ◽  
Author(s):  
Maria Pini ◽  
Melissa E. Gove ◽  
Joseph A. Sennello ◽  
Jantine W. P. M. van Baal ◽  
Lawrence Chan ◽  
...  

Adipokines, cytokines mainly produced by adipocytes, are active participants in the regulation of inflammation. Administration of zymosan (ZY) was used to investigate the regulation and role of adipokines during peritonitis in mice. Injection of ZY led to a significant increase in leptin levels in both serum and peritoneal lavage fluid, whereas a differential trend in local vs. systemic levels was observed for both resistin and adiponectin. The role of leptin in ZY-induced peritonitis was investigated using leptin-deficient ob/ob mice, with and without reconstitution with exogenous leptin. Leptin deficiency was associated with delayed resolution of peritoneal inflammation induced by ZY, because ob/ob mice had a more pronounced cellular infiltrate in the peritoneum as well as higher and prolonged local and systemic levels of IL-6, TNFα, IL-10, and chemokine (C-X-C motif) ligand 2 compared with wild-type mice. Reconstitution with exogenous leptin exacerbated the inflammatory infiltrate and systemic IL-6 levels in ob/ob mice while inhibiting production of TNFα, IL-10, and chemokine (C-X-C motif) ligand 2. In contrast with the important role of leptin in regulating each aspect of ZY-induced peritonitis, adiponectin deficiency was associated only with a decreased inflammatory infiltrate, without affecting cytokine levels. These findings point to a complex role for adipokines in ZY-induced peritonitis and further emphasize the interplay between obesity and inflammation.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


PEDIATRICS ◽  
1994 ◽  
Vol 93 (4) ◽  
pp. 660-662
Author(s):  
Margaret J. Strieper ◽  
Debbie O. Auld ◽  
J. Edward Hulse ◽  
Robert M. Campbell

Objective. To determine the current practice and effectiveness of evaluating recurrent syncope in pediatric patients, and to establish the role of tilt table testing in the evaluation. Design. Retrospective analysis of 54 pediatric patients with the history of syncope referred to cardiologists. Group I consisted of 27 patients examined without tilt table testing group II consisted of 27 patients whose examination included tilt table testing. Results. Group I had an average of 5.4 studies and group II, 6.6 studies performed per patient. Studies included chest radiograph (16 vs 13), electrocardiogram (24 vs 27), echocardiography (21 vs 27), 24-hour electrocardiogram (14 vs 16), transtelephonic monitor (7 vs 8), electrophysiology study (1 vs 3), complete blood cell counts (11 vs 12), chemistries (10 vs 11), thyroid function test (3 vs 3), neurology consult (12 vs 6), electroencephalogram (12 vs 5), and head computed tomographic scan (5 vs 3). Of the 298 non-tilt studies, the results of only 5 (1.6%) were abnormal. Diagnoses were made in 5 (18.5%) of 27 group I patients (Wolff-Parkinson-White syndrome, 1; conversion reaction, 2; hyperventilation, 1; migraines, 1), whereas diagnosis was made in 27 (100%) of 27 group II patients (neurocardiogenic syncope, 25; conversion reaction, 2). Conclusion. An extensive workup is not routinely indicated in syncopal patients with a history consistent with neurocardiogenic syncope. Tilt table testing performed early in the evaluation will increase the probability of a diagnosis, and will often prevent the need for further extensive, expensive anxiety-producing tests.


2006 ◽  
Vol 130 (4) ◽  
pp. 440-446
Author(s):  
Jaime Chavez ◽  
Hays W. J. Young ◽  
David B. Corry ◽  
Michael W. Lieberman

Abstract Context.—During an asthmatic episode, leukotriene C4 (LTC4) and interleukin 13 (IL-13) are released into the airways and are thought to be central mediators of the asthmatic response. However, little is known about how these molecules interact or affect each other's signaling pathway. Objective.—To determine if the LTC4 and IL-13 signaling pathways interact with each other's pathways. Design.—We examined airway responsiveness, cysteinyl LTs (Cys-LTs), and Cys-LT and IL-13 receptor transcript levels in wild-type mice and in mice that were deficient in γ-glutamyl leukotrienase (an enzyme that converts LTC4 to LTD4), STAT6 (signal transducer and activator of transcription 6 [a critical molecule in IL-13 signaling]), and IL-4Rα (a subunit of the IL-13 receptor). Results.—Wild-type (C57BL/129SvEv) and γ-glutamyl leukotrienase–deficient mice showed increased airway responsiveness after intranasal instillation of IL-13; similar results were observed after intranasal instillation of IL-13 or LTC4 in a second wild-type strain (BALB/c). Interleukin 13 treatment reduced levels of Cys-LTs in bronchoalveolar lavage fluid. This change was unaccompanied by changes in other arachidonic acid metabolites or in RNA transcript levels of enzymes associated with Cys-LT synthesis. Interleukin 13 treatment also increased transcript levels of the Cys-LT 1 and Cys-LT 2 receptors, while LTC4 increased transcript levels of the α1 chain of the IL-13 receptor. Furthermore, IL-4Rα–deficient mice had increased airway responsiveness to LTC4 but not to IL-13, whereas STAT6-deficient mice failed to respond to either agonist. Conclusions.—These findings indicate that LTC4 and IL-13 are dependent on or signal through STAT6 to increase airway responsiveness and that both agonists regulate expression of each other's receptors.


2001 ◽  
Vol 281 (5) ◽  
pp. L1303-L1311 ◽  
Author(s):  
Shan-Ze Wang ◽  
Cynthia L. Rosenberger ◽  
Teresa M. Espindola ◽  
Edward G. Barrett ◽  
Yohannes Tesfaigzi ◽  
...  

Clara cell secretory protein (CCSP) is synthesized by nonciliated bronchiolar cells in the lung and modulates lung inflammation to infection. To determine the role of CCSP in the host response to allergic airway disease, CCSP-deficient [(−/−)] mice were immunized twice with ovalbumin (Ova) and challenged by Ova (2 or 5 mg/m3) aerosol. After 2, 3, and 5 days of Ova aerosol challenge (6 h/day), airway reactivity was increased in CCSP(−/−) mice compared with wild-type [CCSP(+/+)] mice. Neutrophils were markedly increased in the bronchoalveolar lavage fluid of CCSP(−/−) Ova mice, coinciding with increased myeloperoxidase activity and macrophage inflammatory protein-2 levels. Lung histopathology and inflammation were increased in CCSP(−/−) compared with wild-type mice after Ova challenge. Mucus production, as assessed by histological staining, was increased in the airway epithelium of CCSP(−/−) Ova mice compared with that in CCSP(+/+) Ova mice. These data suggest a role for CCSP in airway reactivity and the host response to allergic airway inflammation and provide further evidence for the role of the airway epithelium in regulating airway responses in allergic disease.


Sign in / Sign up

Export Citation Format

Share Document