Diet-derived nutrients mediate the inhibition of hypothalamic NPY neurons in the arcuate nucleus of mice during refeeding

2009 ◽  
Vol 297 (1) ◽  
pp. R100-R110 ◽  
Author(s):  
Csilla Becskei ◽  
Thomas A. Lutz ◽  
Thomas Riediger

Fasting activates orexigenic neuropeptide Y neurons in the hypothalamic arcuate nucleus (ARC) of mice, which is reversed by 2 h refeeding with standard chow. Here, we investigated the contribution of diet-derived macronutrients and anorectic hormones to the reversal of the fasting-induced ARC activation during 2 h refeeding. Refeeding of 12-h-fasted mice with a cellulose-based, noncaloric mash induced only a small reduction in c-Fos expression. Refeeding with diets, containing carbohydrates, protein, or fat alone reversed it similar to chow; however, this effect depended on the amount of intake. The fasting-induced ARC activation was unchanged by subcutaneously injected amylin, CCK (both 20 μg/kg), insulin (0.2 U/kg and 0.05 U/kg) or leptin (2.6 mg/kg). Insulin and leptin had no effect on c-Fos expression in neuropeptide Y or proopiomelanocortin-containing ARC neurons. Interestingly, CCK but not amylin reduced the ghrelin-induced c-Fos expression in the ARC in ad libitum-fed mice, suggesting that CCK may inhibit orexigenic ARC neurons when acting together with other feeding-related signals. We conclude that all three macronutrients and also non-nutritive, ingestion-dependent signals contribute to an inhibition of orexigenic ARC neurons after refeeding. Similar to the previously demonstrated inhibitory in vivo action of peptide YY, CCK may be a postprandial mediator of ARC inhibition.

Aging ◽  
2011 ◽  
Vol 3 (11) ◽  
pp. 1092-1097 ◽  
Author(s):  
Yuko Maejima ◽  
Daisuke Kohno ◽  
Yusaku Iwasaki ◽  
Toshihiko Yada

2013 ◽  
Vol 52 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Yoshihiro Suzuki ◽  
Keiko Nakahara ◽  
Keisuke Maruyama ◽  
Rieko Okame ◽  
Takuya Ensho ◽  
...  

The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.


2011 ◽  
Vol 106 (3) ◽  
pp. 1191-1202 ◽  
Author(s):  
Hao Huang ◽  
Youfen Xu ◽  
Anthony N. van den Pol

Two of the biggest health problems facing us today are addiction to nicotine and the increased prevalence of obesity. Interestingly, nicotine attenuates obesity, but the underlying mechanism is not clear. Here we address the hypothesis that if weight-reducing actions of nicotine are mediated by anorexigenic proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus, nicotine should excite these cells. Nicotine at concentrations similar to those found in smokers, 100–1,000 nM, excited POMC cells by mechanisms based on increased spike frequency, depolarization of membrane potential, and opening of ion channels. This was mediated by activation of both α7 and α4β2 nicotinic receptors; by itself, this nicotine-mediated excitation could explain weight loss caused by nicotine. However, in control experiments nicotine also excited the orexigenic arcuate nucleus neuropeptide Y (NPY) cells. Nicotine exerted similar actions on POMC and NPY cells, with a slightly greater depolarizing action on POMC cells. Immunocytochemistry revealed cholinergic axons terminating on both cell types. Nicotine actions were direct in both cell types, with nicotine depolarizing the membrane potentials and reducing input resistance. We found no differences in the relative desensitization to nicotine between POMC and NPY neurons. Nicotine inhibited excitatory synaptic activity recorded in NPY, but not POMC, cells. Nicotine also excited hypocretin/orexin neurons that enhance cognitive arousal, but the responses were smaller than in NPY or POMC cells. Together, these results indicate that nicotine has a number of similar actions, but also a few different actions, on POMC and NPY neurons that could contribute to the weight loss associated with smoking.


Neuropeptides ◽  
2012 ◽  
Vol 46 (6) ◽  
pp. 285-289 ◽  
Author(s):  
Haruaki Kageyama ◽  
Fumiko Takenoya ◽  
Satoshi Hirako ◽  
Nobuhiro Wada ◽  
Yuri Kintaka ◽  
...  

2021 ◽  
Author(s):  
Charlotte Vanacker ◽  
R. Anthony DeFazio ◽  
Charlene M. Sykes ◽  
Suzanne M. Moenter

AbstractGnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized GFAP-expressing astrocytes play a role regulating GnRH and/or KNDy neuron activity and LH release. We used adenoassociated viruses to target designer receptor exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.


Sign in / Sign up

Export Citation Format

Share Document