Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF

2005 ◽  
Vol 289 (2) ◽  
pp. F469-F480 ◽  
Author(s):  
Shenyang Li ◽  
Neriman Gokden ◽  
Mark D. Okusa ◽  
Renu Bhatt ◽  
Didier Portilla

Recently, we demonstrated that peroxisome proliferator-activated receptor-α (PPARα) ligand ameliorates cisplatin-induced acute renal failure (ARF) by preventing inhibition of substrate oxidation, and also by preventing apoptosis and necrosis of the proximal tubule (Li S, Bhatt R, Megyesi J, Gokden N, Shah SV, and Portilla D. Am J Physiol Renal Physiol 287: F990–F998, 2004). In the following studies, we examined the protective effect of PPARα ligand on cisplatin-induced inflammatory responses during ARF. Mice subjected to a single intraperitoneal injection of cisplatin developed ARF at day 3. Cisplatin increased mRNA and protein expression of TNF-α, RANTES, and also upregulated endothelial adhesion molecules ICAM-1/VCAM-1 and chemokine receptors CCR1/CCR5. Cisplatin also led to neutrophil infiltration in the corticomedullary region. Pretreatment of wild-type mice with WY-14,643, a fibrate class of PPARα ligands, before cisplatin significantly suppressed cisplatin-induced upregulation of cytokine/chemokine expression, prevented neutrophil accumulation, and ameliorated renal dysfunction. In contrast, treatment with PPARα ligand before cisplatin did not prevent cytokine/chemokine production, neutrophil accumulation, and did not protect kidney function in PPARα null mice. In addition, we observed that cisplatin-induced NF-κB binding activity in nuclear extracts from wild-type mice was markedly reduced by treatment with PPARα ligand. These results demonstrate that PPARα exerts an anti-inflammatory effect in kidney tissue by a mechanism that includes inhibition of NF-κB DNA binding activity, and this effect results in inhibition of neutrophil infiltration, cytokine/chemokine release, and amelioration of cisplatin-induced ARF.

Author(s):  
Roya Kazemi ◽  
Seyed Jalal Hosseinimehr

Objective: Pioglitazone (PG) is used to control high blood sugar in patients with type 2 diabetes mellitus. PG acts as a peroxisome proliferator-activated receptor γ agonist. In addition to the insulin-sensitizing effect, PG possesses anti-inflammatory effect. In this study, the protective effect of PG was evaluated against DNA damage induced by ionizing radiation in human healthy lymphocytes. Methods: The microtubes containing human whole blood were treated with PG at various concentrations (1-50 μM) for three hours. Then, the blood samples were irradiated with X-ray. Lymphocytes were cultured for determining the frequency of micronuclei as a genotoxicity biomarker in binucleated lymphocytes. Results: The mean percentage of micronuclei was significantly increased in human lymphocytes when were exposed to IR, while it was decreased in lymphocytes pre-treated with PG. The maximum reduction in the frequency of micronuclei in irradiated lymphocytes was observed at 5 μM of PG treatment (48% decrease). Conclusion: The anti-inflammatory property is suggested the mechanism action of PG for protection human lymphocytes against genotoxicity induced by ionizing radiation.


2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


Gene ◽  
2018 ◽  
Vol 675 ◽  
pp. 94-101 ◽  
Author(s):  
Lin Dong ◽  
Lei Yin ◽  
Rong Chen ◽  
Yuanbin Zhang ◽  
Shiyao Hua ◽  
...  

2001 ◽  
Vol 281 (2) ◽  
pp. G544-G551 ◽  
Author(s):  
Kimberly S. Kirkwood ◽  
Nigel W. Bunnett ◽  
John Maa ◽  
Ignazio Castagliolo ◽  
Bao Liu ◽  
...  

Toxin A (TxA) of Clostridium difficile induces acute inflammation of the intestine initiated by release of substance P (SP) and activation of the neurokinin-1 receptor. However, the mechanisms that terminate this response are unknown. We determined whether the SP-degrading enzyme neutral endopeptidase (NEP, EC 3.4.24.11 ) terminates TxA-induced enteritis. We used both genetic deletion and pharmacological inhibition of NEP to test this hypothesis. In wild-type mice, instillation of TxA (0.5–5 μg) into ileal loops for 3 h dose dependently increased ileal fluid secretion, stimulated granulocyte transmigration determined by myeloperoxidase activity, and caused histological damage characterized by depletion of enterocytes, edema, and neutrophil accumulation. Deletion of NEP reduced the threshold secretory and inflammatory dose of TxA and exacerbated the inflammatory responses by more than twofold. This exacerbated inflammation was prevented by pretreatment with recombinant NEP. Conversely, pretreatment of wild-type mice with the NEP inhibitor phosphoramidon exacerbated enteritis. Thus NEP terminates enteritis induced by C. difficile TxA, underlying the importance of SP degradation in limiting neurogenic inflammation.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2630 ◽  
Author(s):  
Isabel Gálvez ◽  
Leticia Martín-Cordero ◽  
María Dolores Hinchado ◽  
Alberto Álvarez-Barrientos ◽  
Eduardo Ortega

Anomalous immune/inflammatory responses in obesity take place along with alterations in the neuroendocrine responses and dysregulation in the immune/stress feedback mechanisms. Exercise is a potential anti-inflammatory strategy in this context, but the influence of exercise on the β2 adrenergic regulation of the monocyte-mediated inflammatory response in obesity remains completely unknown. The first objective of this study was to analyze the effect of exercise on the inflammatory profile and phenotype of monocytes from obese and lean animals, and the second aim was to determine whether obesity could affect monocytes’ inflammatory response to β2 adrenergic activation in exercised animals. C57BL/6J mice were allocated to different lean or obese groups: sedentary, with acute exercise, or with regular exercise. The inflammatory profile and phenotype of their circulating monocytes were evaluated by flow cytometry in the presence or absence of the selective β2 adrenergic receptor agonist terbutaline. Exercise caused an anti-inflammatory effect in obese individuals and a pro-inflammatory effect in lean individuals. β2 adrenergic receptor stimulation exerted a global pro-inflammatory effect in monocytes from exercised obese animals and an anti-inflammatory effect in monocytes from exercised lean animals. Thus, β2 adrenergic regulation of inflammation in monocytes from exercised animals seems to depend on the inflammatory basal set-point.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Xin ◽  
Qin Yuan ◽  
Chaoqi Liu ◽  
Changcheng Zhang ◽  
Ding Yuan

Abstract It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document