scholarly journals Salt intake and the dance of the macula densa cells

2021 ◽  
Vol 320 (3) ◽  
pp. F375-F377
Author(s):  
Allen W. Cowley
Keyword(s):  
2010 ◽  
Vol 298 (6) ◽  
pp. F1465-F1471 ◽  
Author(s):  
Deyin Lu ◽  
Yiling Fu ◽  
Arnaldo Lopez-Ruiz ◽  
Rui Zhang ◽  
Ramiro Juncos ◽  
...  

Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-β is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-α, nNOS-β, and nNOS-γ were measured in the macula densa cells isolated with laser capture microdissection. Three splice variants of nNOS, α-, β-, and γ-mRNAs, were detected in the macula densa cells. After 10 days of high-salt intake, nNOS-α decreased markedly, whereas nNOS-β increased two- to threefold in the macula densa measured with real-time PCR and in the renal cortex measured with Western blot. NO production in the macula densa was measured in the perfused thick ascending limb with an intact macula densa plaque with a fluorescent dye DAF-FM. When the tubular perfusate was switched from 10 to 80 mM NaCl, a maneuver to induce TGF, NO production by the macula densa was increased by 38 ± 3% in normal-salt rats and 52 ± 6% ( P < 0.05) in the high-salt group. We found 1) macula densa cells express nNOS-α, nNOS-β, and nNOS-γ, 2) a high-salt diet enhances nNOS-β, and 3) TGF-induced NO generation from macula densa is enhanced in high-salt diet possibly from nNOS-β. In conclusion, we found that the splice variants of nNOS expressed in macula densa cells were α-, β-, and γ-isoforms and propose that enhanced level of nNOS-β during high-salt intake may contribute to macula densa NO production and help attenuate TGF.


1980 ◽  
Vol 59 (s6) ◽  
pp. 35s-36s
Author(s):  
A. Gillies ◽  
T. Morgan ◽  
W. Fitzgibbon

1. Renin was measured in individual juxtaglomerular apparatuses before and after acidification in vitro.. 2. Active renin increased with delivery of extra sodium by microperfusion to the macula densa and this increase was similar to that achieved with acidification. 3. In rats pretreated with an inhibitor of protein synthesis active renin increased when extra sodium was delivered to the macula densa. 4. Salt intake changed the amount of renin present in the juxtaglomerular apparatus. In rats on a high salt intake the total renin was low and was all in an active form.


2005 ◽  
Vol 288 (3) ◽  
pp. F578-F586 ◽  
Author(s):  
Scott Fraser ◽  
Peter Mount ◽  
Rebecca Hill ◽  
Vicki Levidiotis ◽  
Frosa Katsis ◽  
...  

The AMP-activated protein kinase (AMPK) is a key controller of cellular energy metabolism. We studied its expression and regulation by salt handling in the kidney. Immunoprecipitation and Western blots of protein lysates from whole rat kidney using subunit-specific antibodies showed that the α1-catalytic subunit is expressed in the kidney, associated with the β2- and either γ1- or γ2-subunits. Activated AMPK, detected by immunohistochemical staining for phospho-Thr172 AMPK (pThr172), was expressed on the apical surface of the cortical thick ascending limb of the loop of Henle, including the macula densa, and some parts of the distal convoluted tubule. Activated AMPK was also expressed on the basolateral surface of the cortical and medullary collecting ducts as well as some portions of the distal convoluted tubules. AMPK activity was increased by 25% in animals receiving a high-salt diet, and this was confirmed by Western blotting for pThr172. Low-salt diets were associated with reduced levels of the α-subunit of AMPK, which was highly phosphorylated on Thr172. Surprisingly, both low- and high-salt media transiently activated AMPK in the macula densa cell line MMDD1, an effect due to changes in osmolality, rather than Na+ or Cl− concentration. This study, therefore, demonstrates regulation of AMPK by both a high- and a low-salt intake in vivo and suggests a role for the kinase in the response to changes in osmolality within the kidney.


1998 ◽  
Vol 9 (3) ◽  
pp. 355-362
Author(s):  
M Kihara ◽  
S Umemura ◽  
M Yabana ◽  
Y Sumida ◽  
N Nyui ◽  
...  

The present study investigates whether neuronal type nitric oxide synthase (N-NOS) in the macula densa participates in the regulation of renal renin expression during altered dietary salt intake in angiotensinogen gene-knockout (Atg-/-) mice. Wild-type (Atg+/+) and Atg+/+ mice were fed a low-salt (0.04% NaCl), normal-salt (0.3% NaCl), or high-salt (4% NaCl) diet for 2 wk. Histochemical staining for NADPH diaphorase (NADPHd) and renin were analyzed morphometrically. Levels of N-NOS and renin mRNA in renal cortical tissues were determined by reverse transcription-PCR and Northern blot analysis, respectively. In animals fed a normal-salt diet, the renal expressions of N-NOS and renin were markedly increased in Atg-/- mice compared with Atg+/+ mice. When mutant mice were fed a high-salt diet, the signal intensity of the NADPHd reaction and the number of positively stained macula densa cells were significantly decreased. The levels of renal cortical N-NOS mRNA were also suppressed by the treatment. These changes were paralleled by decreases in renal renin-immunoreactive areas and the levels of renin mRNA. On the other hand, salt restriction did not produce further significant increases in the renal N-NOS and renin expressions in mutant mice, whereas a parallel inverse relationship was observed between these enzyme expressions and the levels of salt intake in wild-type mice. These results suggest that the N-NOS expression in the macula densa is inversely regulated by salt intake and that the enzyme activity is functionally linked to renal renin production. Salt-modulated renal N-NOS and renin expressions are independent on angiotensin formation in Atg-/- mice.


1998 ◽  
Vol 274 (6) ◽  
pp. R1588-R1593 ◽  
Author(s):  
Christopher S. Wilcox ◽  
Xiaolin Deng ◽  
William J. Welch

Micropuncture studies of single nephrons have shown that macula densa solute reabsorption via a furosemide-sensitive pathway activates nitric oxide (NO) generation via neuronal NO synthase (nNOS). This pathway is enhanced during salt loading. We investigated the hypothesis that changes in NO generation via nNOS in the macula densa contribute to changes in whole kidney NO generation and action during alterations in salt intake. Groups of rats ( n = 6–10) were equilibrated to high-salt (HS) or low-salt (LS) diets and were administered a vehicle (Veh), 7-nitroindazole (7-NI; a relatively selective inhibitor of nNOS), or furosemide (F; an inhibitor of macula densa solute reabsorption) with volume replacement. Compared with LS, excretion of the NO metabolites, NO2 plus NO3(NOX) was increased during HS (LS: 9.0 ± 0.5 vs. HS: 15.7 ± 0.8 μmol/24 h; P < 0.001), but this difference was prevented by 7-NI (LS: 7.4 ± 1.3 vs. HS: 9.4 ± 1.6 μmol/24 h; NS). During nonselective blockade of NOS with N G-nitro-l-arginine methyl ester (l-NAME), renal vascular resistance (RVR) increased more in HS than LS (HS: +160 ± 17 vs. LS: +83 ± 10%; P < 0.001). This difference in response to nonselective NOS inhibition was prevented by pretreatment with 7-NI (HS: +28 ± 6 vs. LS: +34 ± 8%; NS) or F with volume replacement (HS: +79 ± 11 vs. LS: +62 ± 4%; NS). In conclusion, compared with salt restriction, HS intake increases NO generation and renal action that depend on nNOS and macula densa solute reabsorption.


Author(s):  
Georgina Gyarmati ◽  
Urvi Nikhil Shroff ◽  
Anne D.M. Riquier-Brison ◽  
Wilhelm Kriz ◽  
Brigitte Kaissling ◽  
...  

Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy (EM) of rat, rabbit, and human kidney. An elaborate network of major and minor cell processes here named maculapodia were found at the cell base, projecting towards other MD cells and the glomerular vascular pole. The extent of maculapodia showed up-regulation by low dietary salt intake and female gender. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. EM of rat, rabbit, and human kidneys, and three-dimensional (3D) volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and the afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus (JGA) between MD cells and between MD and other target cells.


2004 ◽  
Vol 286 (6) ◽  
pp. F1054-F1058 ◽  
Author(s):  
Peter Komlosi ◽  
Janos Peti-Peterdi ◽  
Amanda L. Fuson ◽  
Attila Fintha ◽  
Laszlo Rosivall ◽  
...  

One component of the macula densa (MD) tubuloglomerular feedback (TGF) signaling pathway may involve basolateral release of ATP through a maxi-anion channel. Release of ATP has previously been studied during a maximal luminal NaCl concentration ([NaCl]L) stimulus (20–150 mmol/l). Whether MD ATP release occurs during changes in [NaCl]L within the physiological range (20–60 mmol/l) has not been examined. Also, because TGF is known to be enhanced by low dietary salt intake, we examined the pattern of MD ATP release from salt-restricted rabbits. Fluorescence microscopy, with fura 2-loaded cultured mouse mesangial cells as biosensors, was used to assess ATP release from the isolated, perfused thick ascending limb containing the MD segment. The mesangial biosensor cells, which contain purinergic receptors and elevate intracellular Ca2+ concentration ([Ca2+]i) on ATP binding, were placed adjacent to the MD basolateral membrane. Elevations in [NaCl]L between 0 and 80 mmol/l, in 20-mmol/l increments, caused stepwise increases in [Ca2+]i, with the highest increase at [NaCl]L of ∼60 mmol/l. Luminal furosemide at 10−4 mol/l blocked ATP release, which suggests that the efflux of ATP required MD Na-2Cl-K cotransport. A low-salt diet for 1 wk increased the magnitude of [NaCl]L-dependent elevations in biosensor [Ca2+]i by twofold, whereas high-salt intake had no effect. In summary, ATP release occurs over the same range of [NaCl]L (20–60 mmol/l) previously reported for TGF responses, and, similar to TGF, ATP release was enhanced by dietary salt restriction. Thus these two findings are consistent with the role of MD ATP release as a signaling component of the TGF pathway.


1971 ◽  
Vol 67 (1) ◽  
pp. 159-173
Author(s):  
A. Peytremann ◽  
R. Veyrat ◽  
A. F. Muller

ABSTRACT Variations in plasma renin activity and urinary aldosterone excretion were studied in normal subjects submitted to salt restriction and simultaneous inhibition of ACTH production with a new synthetic steroid, 6-dehydro-16-methylene hydrocortisone (STC 407). At a dose of 10 mg t. i. d. this preparation exerts an inhibitory effect on the pituitary comparable to that of 2 mg of dexamethasone. In subjects maintained on a restricted salt intake, STC 407 does not delay the establishment of an equilibrium in sodium balance. The increases in endogenous aldosterone production and in plasma renin activity are also similar to those seen in the control subjects. A possible mineralocorticoid effect of STC 407 can be excluded. Under identical experimental conditions, the administration of dexamethasone yielded results comparable to those obtained with STC 407.


Sign in / Sign up

Export Citation Format

Share Document