scholarly journals Single-molecule labeling for studying trafficking of renal transporters

2018 ◽  
Vol 315 (5) ◽  
pp. F1243-F1249 ◽  
Author(s):  
Ankita Bachhawat Jaykumar ◽  
Paulo S. Caceres ◽  
Pablo A. Ortiz

The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.

2017 ◽  
Vol 8 (5) ◽  
pp. 3668-3675 ◽  
Author(s):  
Ruijie Deng ◽  
Kaixiang Zhang ◽  
Yupeng Sun ◽  
Xiaojun Ren ◽  
Jinghong Li

We report a robust method for the efficient imaging of mRNA with single-nucleotide and near-single-molecule resolution in single cells.


2020 ◽  
Author(s):  
Jaap van Krugten ◽  
Noémie Danné ◽  
Erwin J.G. Peterman

AbstractSensing and reacting to the environment is essential for survival and procreation of most organisms. Caenorhabditis elegans senses soluble chemicals with transmembrane proteins (TPs) in the cilia of its chemosensory neurons. Development, maintenance and function of these cilia relies on intraflagellar transport (IFT), in which motor proteins transport cargo, including sensory TPs, back and forth along the ciliary axoneme. Here we use live fluorescence imaging to show that IFT machinery and the sensory TP OCR-2 reversibly redistribute along the cilium after exposure to repellant chemicals. To elucidate the underlying mechanisms, we performed single-molecule tracking experiments and found that OCR-2 distribution depends on an intricate interplay between IFT-driven transport, normal diffusion and subdiffusion that depends on the specific location in the cilium. These insights in the role of IFT on the dynamics of cellular signal transduction contribute to a deeper understanding of the regulation of sensory TPs and chemosensing.


2002 ◽  
Vol 42 (supplement2) ◽  
pp. S41
Author(s):  
K. Murase ◽  
Y. Hirako ◽  
T. Fujiwara ◽  
R. Iino ◽  
K. Owaribe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document