scholarly journals Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion

2010 ◽  
Vol 299 (2) ◽  
pp. F369-F379 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Jill W. Verlander ◽  
Jesse M. Bishop ◽  
Raoul D. Nelson ◽  
Mary E. Handlogten ◽  
...  

Rh C glycoprotein (Rhcg) is an NH3-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.

2010 ◽  
Vol 299 (5) ◽  
pp. F1065-F1077 ◽  
Author(s):  
Jesse M. Bishop ◽  
Jill W. Verlander ◽  
Hyun-Wook Lee ◽  
Raoul D. Nelson ◽  
Arthur J. Weiner ◽  
...  

Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2–4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.


2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


2006 ◽  
Vol 290 (2) ◽  
pp. F397-F408 ◽  
Author(s):  
Ramanathan M. Seshadri ◽  
Janet D. Klein ◽  
Shelley Kozlowski ◽  
Jeff M. Sands ◽  
Young-Hee Kim ◽  
...  

Chronic metabolic acidosis induces dramatic increases in net acid excretion that are predominantly due to increases in urinary ammonia excretion. The current study examines whether this increase is associated with changes in the expression of the renal ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). Chronic metabolic acidosis was induced in Sprague-Dawley rats by HCl ingestion for 1 wk; control animals were pair-fed. After 1 wk, metabolic acidosis had developed, and urinary ammonia excretion increased significantly. Rhcg protein expression was increased in both the outer medulla and the base of the inner medulla. Intercalated cells in the outer medullary collecting duct (OMCD) and in the inner medullary collecting duct (IMCD) in acid-loaded animals protruded into the tubule lumen and had a sharp, discrete band of apical Rhcg immunoreactivity, compared with a flatter cell profile and a broad band of apical immunolabel in control kidneys. In addition, basolateral Rhcg immunoreactivity was observed in both control and acidotic kidneys. Cortical Rhcg protein expression and immunoreactivity were not detectably altered. Rhcg mRNA expression was not significantly altered in the cortex, outer medulla, or inner medulla by chronic metabolic acidosis. Rhbg protein and mRNA expression were unchanged in the cortex, outer and inner medulla, and no changes in Rhbg immunolabel were evident in these regions. We conclude that chronic metabolic acidosis increases Rhcg protein expression in intercalated cells in the OMCD and in the IMCD, where it is likely to mediate an important role in the increased urinary ammonia excretion.


2007 ◽  
Vol 293 (4) ◽  
pp. F1342-F1354 ◽  
Author(s):  
Ki-Hwan Han ◽  
Hye-Young Kim ◽  
Byron P. Croker ◽  
Sirirat Reungjui ◽  
Su-Youn Lee ◽  
...  

Acute renal injury induces metabolic acidosis, but its specific effects on the collecting duct, the primary site for urinary ammonia secretion, the primary component of net acid excretion, are incompletely understood. We induced ischemia-reperfusion (I/R) acute renal injury in Sprague-Dawley rats by clamping the renal pedicles bilaterally for 30 min followed by reperfusion for 6 h. Control rats underwent sham surgery without renal pedicle clamping. I/R injury decreased urinary ammonia excretion significantly but did not persistently alter urine volume, Na+, K+, or bicarbonate excretion. Histological examination demonstrated cellular damage in the outer and inner medullary collecting duct, as well as in the proximal tubule and the thick ascending limb of the loop of Henle. A subset of collecting duct cells were damaged and/or detached from the basement membrane; these cells were present predominantly in the outer medulla and were less frequent in the inner medulla. Immunohistochemistry identified that the damaged/detached cells were A-type intercalated cells, not principal cells. Both TdT-mediated dUTP nick-end labeling (TUNEL) staining and transmission electron microscopic examination demonstrated apoptosis but not necrosis. However, immunoreactivity for caspase-3 was observed in the proximal tubule, but not in collecting duct intercalated cells, suggesting that mechanism(s) of collecting duct intercalated cell apoptosis differ from those operative in the proximal tubule. We conclude that I/R injury decreases renal ammonia excretion and is associated with intercalated cell-specific detachment and apoptosis in the outer and inner medullary collecting duct. These effects likely contribute to the metabolic acidosis frequently observed in acute renal injury.


2018 ◽  
Vol 314 (5) ◽  
pp. F820-F831 ◽  
Author(s):  
A. M. Assmus ◽  
M. K. Mansley ◽  
L. J. Mullins ◽  
A. Peter ◽  
J. J. Mullins

The cortical collecting duct of the mammalian kidney plays a critical role in the regulation of body volume, sodium pH, and osmolarity and is composed of two distinct cells types, principal cells and intercalated cells. Each cell type is detectable in the kidney by the localization of specific transport proteins such as aquaporin 2 (Aqp2) and epithelial sodium channel (ENaC) in principal cells and V-ATPase B1 and connexin 30 (Cx30) in intercalated cells. mCCDcl1 cells have been widely used as a mouse principal cell line on the basis of their physiological characteristics. In this study, the mCCDcl1 parental cell line and three sublines cloned from isolated single cells (Ed1, Ed2, and Ed3) were grown on filters to assess their transepithelial resistance, transepithelial voltage, equivalent short circuit current and expression of the cell-specific markers Aqp2, ENaC, V-ATPaseB1, and Cx30. The parental mCCDcl1 cell line presented amiloride-sensitive electrogenic sodium transport indicative of principal cell function; however, immunocytochemistry and RT-PCR showed that some cells expressed the intercalated cell-specific markers V-ATPase B1 and Cx30, including a subset of cells also positive for Aqp2 and ENaC. The three subclonal lines contained cells that were positive for both intercalated and principal cell-specific markers. The vertical transmission of both principal and intercalated cell characteristics via single cell cloning reveals the plasticity of mCCDcl1 cells and a direct lineage relationship between these two physiologically important cell types and is consistent with mCCDcl1 cells being precursor cells.


2014 ◽  
Vol 306 (4) ◽  
pp. F389-F400 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Jill W. Verlander ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
I. David Weiner

The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3− were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1–5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosph enolpyruvate carboxykinase (PEPCK) and Na+/H+ exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.


2010 ◽  
Vol 299 (1) ◽  
pp. F187-F198 ◽  
Author(s):  
Ki-Hwan Han ◽  
Su-Youn Lee ◽  
Wan-Young Kim ◽  
Jung-A Shin ◽  
Jin Kim ◽  
...  

Ammonia metabolism is a primary component of acid-base homeostasis but is incompletely developed at time of birth. Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg) are recently recognized ammonia transporter family members expressed in the mammalian kidney. This study's purpose was to establish the expression and localization of Rhbg and Rhcg during kidney development. We examined kidneys from fetal days 16 ( E16), 18 ( E18), and 20 ( E20), and from the first 21 days of postnatal development. Rhbg was expressed initially at E18, with expression only in the connecting tubule (CNT); at E20, Rhbg was expressed in both the CNT and the medullary collecting duct (MCD). In contrast, Rhcg was first expressed at E16 with basal expression in the ureteric bud; at E18, it was expressed in a subset of CNT cells with an apical pattern, followed by apical and basolateral expression in the MCD at E20. In the cortex, Rhbg and Rhcg expression increased in the CNT before expression in the cortical collecting duct during fetal development. In the MCD, both Rhbg and Rhcg expression was initially in cells in the papillary tip, with gradual removal from the tip during the late fetal period and transition during the early neonatal period to an adult pattern with predominant expression in the outer MCD and only rare expression in cells in the initial inner MCD. Double-labeling with intercalated cell-specific markers identified that Rhbg and Rhcg were expressed initially in CNT cells, CNT A-type intercalated cells and non-A, non-B intercalated cells, and in MCD A-type intercalated cells. We conclude that expression of Rhbg and Rhcg parallels intercalated cell development and that immature Rhbg and Rhcg expression at birth contributes to incomplete ammonia excretion capacity.


2006 ◽  
Vol 291 (5) ◽  
pp. F1052-F1060 ◽  
Author(s):  
Wan-Young Kim ◽  
Joon-Ho Jung ◽  
Eun-Young Park ◽  
Chul-Woo Yang ◽  
Hyang Kim ◽  
...  

Recent studies of the distribution of PKC isoenzymes in the mouse kidney demonstrated that PKC-α, -βI, and -δ are expressed in intercalated cells. The purpose of this study was to identify the intercalated cell subtypes that express the different PKC isoenzymes and determine the location of the PKC isoenzymes within these cells. Adult C57BL/6 mice kidney tissues were processed for multiple-labeling immunohistochemistry. Antibodies against the vacuolar H+-ATPase and pendrin were used to identify intercalated cell subtypes, whereas antibodies against calbindin D28K and aquaporin-2 (AQP2) were used to identify connecting tubule cells and principal cells of the collecting duct, respectively. Within type A intercalated cells, PKC-δ was highly expressed in the apical part of the cells, whereas immunoreactivity for both PKC-α and PKC-βI was weak. Type B intercalated cells exhibited strong expression of PKC-α, -βI, and -δ. PKC-α and -βI were localized throughout the cytoplasm, whereas PKC-δ was restricted to the basal domain. Within non-A-non-B cells, immunoreactivity for both PKC-α and PKC-βI was high in intensity and localized diffusely in the cytoplasm, whereas PKC-δ was localized in the apical part of the cells. None of the PKC isoenzymes (PKC-α, -βI, or -δ) were expressed in the calbindin D28K-positive connecting tubule cells. Within AQP2-positive principal cells of the collecting duct, PKC-α was expressed on the basolateral plasma membrane, but no significant staining was detected for PKC-βI and -δ. In summary, this study demonstrates distinct and differential expression patterns of PKC-α, -βI, and -δ in the three subtypes of intercalated cells in the mouse kidney.


2013 ◽  
Vol 304 (4) ◽  
pp. F410-F421 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Jill W. Verlander ◽  
Jesse M. Bishop ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
...  

The Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis. The purpose of the current studies was to determine Rhcg's role in hypokalemia-stimulated renal ammonia excretion through the use of mice with collecting duct-specific Rhcg deletion (CD-Rhcg-KO). In mice with intact Rhcg expression, a K+-free diet increased urinary ammonia excretion and urine alkalinization and concurrently increased Rhcg expression in the collecting duct in the outer medulla. Immunohistochemistry and immunogold electron microscopy showed hypokalemia increased both apical and basolateral Rhcg expression. In CD-Rhcg-KO, a K+-free diet increased urinary ammonia excretion and caused urine alkalinization, and the magnitude of these changes did not differ from mice with intact Rhcg expression. In mice on a K+-free diet, CD-Rhcg-KO increased phosphate-dependent glutaminase (PDG) expression in the outer medulla. We conclude that hypokalemia increases collecting duct Rhcg expression, that this likely contributes to the hypokalemia-stimulated increase in urinary ammonia excretion, and that adaptive increases in PDG expression can compensate for the absence of collecting duct Rhcg.


2018 ◽  
Vol 29 (4) ◽  
pp. 1182-1197 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Gunars Osis ◽  
Autumn N. Harris ◽  
Lijuan Fang ◽  
Michael F. Romero ◽  
...  

Renal ammonia metabolism is the primary mechanism through which the kidneys maintain acid-base homeostasis, but the molecular mechanisms regulating renal ammonia generation are unclear. In these studies, we evaluated the role of the proximal tubule basolateral plasma membrane electrogenic sodium bicarbonate cotransporter 1 variant A (NBCe1-A) in this process. Deletion of the NBCe1-A gene caused severe spontaneous metabolic acidosis in mice. Despite this metabolic acidosis, which normally causes a dramatic increase in ammonia excretion, absolute urinary ammonia concentration was unaltered. Additionally, NBCe1-A deletion almost completely blocked the ability to increase ammonia excretion after exogenous acid loading. Under basal conditions and during acid loading, urine pH was more acidic in mice with NBCe1-A deletion than in wild-type controls, indicating that the abnormal ammonia excretion was not caused by a primary failure of urine acidification. Instead, NBCe1-A deletion altered the expression levels of multiple enzymes involved in proximal tubule ammonia generation, including phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase, under basal conditions and after exogenous acid loading. Deletion of NBCe1-A did not impair expression of key proteins involved in collecting duct ammonia secretion. These studies demonstrate that the integral membrane protein NBCe1-A has a critical role in basal and acidosis-stimulated ammonia metabolism through the regulation of proximal tubule ammonia-metabolizing enzymes.


Sign in / Sign up

Export Citation Format

Share Document