Phospholemman expression in extraglomerular mesangium and afferent arteriole of the juxtaglomerular apparatus

2003 ◽  
Vol 285 (1) ◽  
pp. F121-F129 ◽  
Author(s):  
Randall K. Wetzel ◽  
Kathleen J. Sweadner

The molecular mechanisms with which the juxtaglomerular apparatus accomplishes its twin functions, acute regulation of glomerular blood flow and secretion of renin, are still not clearly understood. Least understood is the role of the extraglomerular mesangial (EM) cells, also known as lacis or Goormaghtigh cells, which lie sandwiched between the macula densa and the afferent and efferent arterioles. Here, we report that immunoreactivity for phospholemman (FXYD1), a single-span membrane protein homologous to the gamma (γ) sub-unit of the Na,K-ATPase, is found in the kidney in EM cells with the Na,K-ATPase β2-subunit and in cortical blood vessels and the afferent arteriole with Na,K-ATPase α2 and β2. Phospholemman's distribution in EM cells is distinct from that of the Na,K-ATPase γ-subunit, which is found on the basolateral surface of macula densa cells with Na,K-ATPase α1 and β1. Phospholemman is a major kinase target, and its location in the juxtaglomerular apparatus suggests that it is involved in tubuloglomerular feedback.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sumit R Monu ◽  
Mani Maheshwari ◽  
Hong Wang ◽  
Ed Peterson ◽  
Oscar Carretero

In obesity, renal damage is caused by increase in renal blood flow (RBF), glomerular capillary pressure (P GC ), and single nephron glomerular filtration rate but the mechanism behind this alteration in renal hemodynamics is unclear. P GC is controlled mainly by the afferent arteriole (Af-Art) resistance. Af-Art resistance is regulated by mechanism similar to that in other arterioles and in addition, it is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to an increase in sodium chloride (NaCl) in the macula densa, via sodium–potassium-2-chloride cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation and is mediated by connecting tubule via epithelial sodium channel (ENaC). CTGF is blocked by the ENaC inhibitor benzamil. Attenuation of TGF reduces Af-Art resistance and allows systemic pressure to get transmitted to the glomerulus that causes glomerular barotrauma/damage. In the current study, we tested the hypothesis that TGF is attenuated in obesity and that CTGF contributes to this effect. We used Zucker obese rats (ZOR) while Zucker lean rats (ZLR) served as controls. We performed in-vivo renal micropuncture of individual rat nephrons while measuring stop-flow pressure (P SF ), an index of P GC. TGF response was measured as a decrease in P SF induced by changing the rate of late proximal perfusion from 0 to 40nl/min in stepwise manner.CTGF was calculated as the difference of P SF value between vehicle and benzamil treatment, at each perfusion rate. Maximal TGF response was significantly less in ZOR (6.16 ± 0.52 mmHg) when compared to the ZLR (8.35 ± 1.00mmHg), p<0.05 , indicating TGF resetting in the ZOR. CTGF was significantly higher in ZOR (6.33±1.95 mmHg) when compared to ZLR (1.38±0.89 mmHg), p<0.05 . When CTGF was inhibited with the ENaC blocker Benzamil (1μM), maximum P SF decrease was 12.30±1.72 mmHg in ZOR and 10.60 ± 1.73 mmHg in ZLR, indicating that blockade of CTGF restored TGF response in ZOR. These observations led us to conclude that TGF is reset in ZOR and that enhanced CTGF contributes to this effect. Increase in CTGF may explain higher renal blood flow, increased P GC and higher glomerular damage in obesity.


1986 ◽  
Vol 250 (1) ◽  
pp. F109-F114
Author(s):  
T. Tamaki ◽  
K. Fukui ◽  
S. Fujioka ◽  
H. Iwao ◽  
T. Okahara ◽  
...  

Effects of ouabain on the autoregulation of renal blood flow (RBF) and renin release were examined in filtering and nonfiltering kidneys of anesthetized dogs. Autoregulation of RBF was observed in both kidneys; however, autoregulation in the nonfiltering kidney was comparatively less efficient. These findings indicate that both the myogenic mechanism via a sensor element in the afferent arteriole, a so-called baroreceptor, and the tubuloglomerular feedback mechanism via the macula densa are essential for complete autoregulation. In both the control and nonfiltering kidney, intrarenal arterial infusion of ouabain abolished the autoregulation of RBF and glomerular filtration rate, with no change in the renal vascular sensitivity to vasoactive substances or in renin release induced by pressure reduction. Since various vasoactive drugs elicited a normal vascular response, it appears that the site of action of ouabain was not the vascular contractile elements; at least, an impairment of autoregulation during ouabain infusion was apparently not due to a defect in these elements. These results suggest the possible existence of another mediator, a sensor element in the afferent arteriole that is affected by ouabain. Ouabain may abolish the autoregulation of RBF and renin release via a modification of this baroreceptor in the afferent arteriole as well as through inhibition of the macula densa.


1997 ◽  
Vol 8 (12) ◽  
pp. 1831-1837 ◽  
Author(s):  
V Vallon ◽  
H Osswald ◽  
R C Blantz ◽  
S Thomson

Transport through the Na+-2Cl(-)-K+ cotransporter in the luminal membrane of macula densa cells is considered critical for tubuloglomerular feedback (TGF). Although various studies could support the importance of luminal Na+ and Cl-, the role of luminal K+ in TGF has not been thoroughly addressed. The study presented here examines this issue in nephrons with superficial glomeruli of anesthetized male Munich-Wistar-Frömter rats. Ambient Na+ concentration in early distal tubular fluid was approximately 22 mM, suggesting collection sites relatively close to the macula densa segment. First, it was found that ambient early distal tubular K+ concentration is approximately 1.3 mM, i.e., close to the K+ affinity of the Na+-2Cl(-)-K+ cotransporter in the thick ascending limb. Second, it was observed that a change in late proximal tubular flow rate, i.e., a maneuver that is known to induce a TGF response, significantly alters early distal tubular K+ concentration. Third, previous experiments failed to show an inhibition in TGF response during retrograde perfusion of the macula densa with K+-free solutions. Because of a potential K+ influx into the lumen between the perfusion site and the macula densa, however, the K+ channel blocker U37883A was added to the K+-free perfusate. TGF response was assessed as the fall in nephron filtration rate in response to retrograde perfusion of the macula densa segment from early distal tubular site. It was observed that luminal U37883A (100 microM) significantly attenuated TGF. Because adding 5 mM KCl to the perfusate restored TGF in the presence of U37883A and because the inhibitory action of U37883A on tubular K+ secretion was confirmed, the effect of U37883A on TGF was most likely caused by inhibition of K+ influx into the perfused segment, which decreased luminal K+ concentration at the macula densa. The present findings support a potential role for luminal K+ in TGF, which is in accordance with a transmission of the TGF signal across the macula densa via Na+-2Cl(-)-K+ cotransporter.


1989 ◽  
Vol 257 (2) ◽  
pp. F310-F314 ◽  
Author(s):  
M. E. Stoeckel ◽  
M. J. Freund-Mercier

Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective 125I-labeled OT antagonist (125I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of 125I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that 125I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.


2004 ◽  
Vol 66 (4) ◽  
pp. 1479-1485 ◽  
Author(s):  
Yilin Ren ◽  
Jeffrey L. Garvin ◽  
Ruisheng Liu ◽  
Oscar A. Carretero

2003 ◽  
Vol 284 (3) ◽  
pp. F498-F502 ◽  
Author(s):  
Andrea Hartner ◽  
Nada Cordasic ◽  
Margarete Goppelt-Struebe ◽  
Roland Veelken ◽  
Karl F. Hilgers

Upregulation of the inducible cyclooxygenase (COX-2) in the macula densa accompanies the activation of the juxtaglomerular apparatus in many high-renin conditions. The functional role of COX-2 in these disease states is poorly understood. We tested whether COX-2 is required to increase renin in renovascular hypertension. Rats with established two-kidney, one-clip (2K1C) hypertension were treated for 2 wk with two different inhibitors of COX-2, NS-398 and rofecoxib, respectively. Hypertension in 2K1C rats was not affected or slightly enhanced by COX-2 inhibition, as measured intra-arterially in conscious animals. The increase in plasma renin activity was also unchanged by both rofecoxib and NS-398. The number of glomeruli with a renin-positive juxtaglomerular apparatus was elevated in clipped kidneys and decreased in contralateral kidneys of 2K1C rats. This pattern was unaltered by COX-2 inhibition. To test the effects of COX-2 blockade on a primarily macula densa-mediated stimulus, we studied salt depletion for comparison. A low-salt diet induced a significant increase in plasma renin activity, which was partially inhibited by treatment with NS-398. We conclude that inhibition of COX-2 in established renovascular hypertension does not affect renin synthesis or release. Thus either COX-2 is not necessary for the macula densa mechanism or the macula densa is not important for maintaining high renin in renovascular hypertension.


2013 ◽  
Vol 304 (9) ◽  
pp. R726-R733 ◽  
Author(s):  
Yiling Fu ◽  
Yan Lu ◽  
Eddie Y. Liu ◽  
Xiaolong Zhu ◽  
Gouri J. Mahajan ◽  
...  

Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flow pressure, ΔPsf) in castrated Sprague-Dawley rats. The addition of testosterone (10−7 mol/l) into the lumen increased the ΔPsf from 10.1 ± 1.2 to 12.2 ± 1.2 mmHg. To determine whether androgen receptors (AR) are involved, mRNA of AR was measured in the macula dense cells isolated by laser capture microdissection from kidneys, and a macula densa-like cell line (MMDD1). AR mRNA was expressed in the macula densa of rats and in MMDD1 cells. We next examined the effects of the AR blocker, flutamide (10−5 mol/l) on the TGF response. The addition of flutamide blocked the effects of testosterone on TGF. The addition of Tempol (10−4 mol/l) or polyethylene glycol-superoxide dismutase (100 U/ml) to scavenge superoxide blocked the effect of testosterone to augment TGF. We then applied apocynin to inhibit NAD(P)H oxidase and oxypurinol to inhibit xanthine oxidase and found the testosterone-induced augmentation of TGF was blocked. In additional experiments in MMDD1 cells, we found that testosterone increased O2− generation. Apocynin or oxypurinol blocked the testosterone-induced increases of O2−, while blockade of COX-2 with NS-398 had no effect. These findings suggest that testosterone enhances TGF response by stimulating O2− production in macula densa via an AR-dependent pathway.


2007 ◽  
Vol 293 (5) ◽  
pp. F1489-F1500 ◽  
Author(s):  
Armin Just ◽  
William J. Arendshorst

Autoregulation of renal blood flow (RBF) is mediated by a fast myogenic response (MR; ∼5 s), a slower tubuloglomerular feedback (TGF; ∼25 s), and potentially additional mechanisms. A1 adenosine receptors (A1AR) mediate TGF in superficial nephrons and contribute to overall autoregulation, but the impact on the other autoregulatory mechanisms is unknown. We studied dynamic autoregulatory responses of RBF to rapid step increases of renal artery pressure in mice. MR was estimated from autoregulation within the first 5 s, TGF from that at 5–25 s, and a third mechanism from 25–100 s. Genetic deficiency of A1AR (A1AR−/−) reduced autoregulation at 5–25 s by 50%, indicating a residual fourth mechanism resembling TGF kinetics but independent of A1AR. MR and third mechanism were unaltered in A1AR−/−. Autoregulation in A1AR−/− was faster at 5–25 than at 25–100 s suggesting two separate mechanisms. Furosemide in wild-type mice (WT) eliminated the third mechanism and enhanced MR, indicating TGF-MR interaction. In A1AR−/−, furosemide did not further impair autoregulation at 5–25 s, but eliminated the third mechanism and enhanced MR. The resulting time course was the same as during furosemide in WT, indicating that A1AR do not affect autoregulation during furosemide inhibition of TGF. We conclude that at least one novel mechanism complements MR and TGF in RBF autoregulation, that is slower than MR and TGF and sensitive to furosemide, but not mediated by A1AR. A fourth mechanism with kinetics similar to TGF but independent of A1AR and furosemide might also contribute. A1AR mediate classical TGF but not TGF-MR interaction.


2008 ◽  
Vol 294 (4) ◽  
pp. F965-F970 ◽  
Author(s):  
Mona Oppermann ◽  
David J. Friedman ◽  
Robert Faulhaber-Walter ◽  
Diane Mizel ◽  
Hayo Castrop ◽  
...  

Studies in mice with null mutations of adenosine 1 receptor or ecto-5′-nucleotidase genes suggest a critical role of adenosine and its precursor 5′-AMP in tubulovascular signaling. To assess whether the source of juxtaglomerular nucleotides can be traced back to ATP dephosphorylation, experiments were performed in mice with a deficiency in NTPDase1/CD39, an ecto-ATPase catalyzing the formation of AMP from ATP and ADP. Urine osmolarity and glomerular filtration rate (GFR) were indistinguishable between NTPDase1/CD39−/− and wild-type (WT) mice. Maximum tubuloglomerular feedback (TGF) responses, as determined by proximal tubular stop flow pressure measurements, were reduced in NTPDase1/CD39−/− mice compared with controls (4.2 ± 0.9 vs. 10.5 ± 1.2 mmHg, respectively; P = 0.0002). Residual TGF responses gradually diminished after repeated changes in tubular perfusion flow averaging 2.9 ± 0.9 (on response) and 3.5 ± 1.1 (off response) mmHg after the second and 2.2 ± 0.5 (on response) and 1.5 ± 0.8 (off response) mmHg after the third challenge, whereas no fading of TGF responsiveness was observed in WT mice. Macula densa-dependent and pressure-dependent inhibition of renin secretion, as assessed by acute salt loading and phenylephrine injection, respectively, were intact in NTPDase1/CD39-deficient mice. In summary, NTPDase1/CD39-deficient mice showed a markedly compromised TGF regulation of GFR. These data support the concept of an extracellular dephosphorylation cascade during tubular-vascular signal transmission in the juxtaglomerular apparatus that is initiated by a regulated release of ATP from macula densa cells and results in adenosine-mediated afferent arteriole constriction.


Sign in / Sign up

Export Citation Format

Share Document