scholarly journals Potential role of luminal potassium in tubuloglomerular feedback.

1997 ◽  
Vol 8 (12) ◽  
pp. 1831-1837 ◽  
Author(s):  
V Vallon ◽  
H Osswald ◽  
R C Blantz ◽  
S Thomson

Transport through the Na+-2Cl(-)-K+ cotransporter in the luminal membrane of macula densa cells is considered critical for tubuloglomerular feedback (TGF). Although various studies could support the importance of luminal Na+ and Cl-, the role of luminal K+ in TGF has not been thoroughly addressed. The study presented here examines this issue in nephrons with superficial glomeruli of anesthetized male Munich-Wistar-Frömter rats. Ambient Na+ concentration in early distal tubular fluid was approximately 22 mM, suggesting collection sites relatively close to the macula densa segment. First, it was found that ambient early distal tubular K+ concentration is approximately 1.3 mM, i.e., close to the K+ affinity of the Na+-2Cl(-)-K+ cotransporter in the thick ascending limb. Second, it was observed that a change in late proximal tubular flow rate, i.e., a maneuver that is known to induce a TGF response, significantly alters early distal tubular K+ concentration. Third, previous experiments failed to show an inhibition in TGF response during retrograde perfusion of the macula densa with K+-free solutions. Because of a potential K+ influx into the lumen between the perfusion site and the macula densa, however, the K+ channel blocker U37883A was added to the K+-free perfusate. TGF response was assessed as the fall in nephron filtration rate in response to retrograde perfusion of the macula densa segment from early distal tubular site. It was observed that luminal U37883A (100 microM) significantly attenuated TGF. Because adding 5 mM KCl to the perfusate restored TGF in the presence of U37883A and because the inhibitory action of U37883A on tubular K+ secretion was confirmed, the effect of U37883A on TGF was most likely caused by inhibition of K+ influx into the perfused segment, which decreased luminal K+ concentration at the macula densa. The present findings support a potential role for luminal K+ in TGF, which is in accordance with a transmission of the TGF signal across the macula densa via Na+-2Cl(-)-K+ cotransporter.

1995 ◽  
Vol 268 (5) ◽  
pp. F960-F966 ◽  
Author(s):  
J. Schnermann

The furosemide sensitivity of the tubuloglomerular feedback (TGF) response has suggested an important role for the Na-2Cl-K cotransporter in the mechanism by which increased luminal NaCl concentration causes afferent arteriolar vasoconstriction. The present experiments in anesthetized rats were performed to evaluate the effect of K channel blockade with Ba on TGF, since Ba has been shown to inhibit NaCl transport in the thick ascending limb. The presence of either 1.5 or 2 mM BaCl2 during retrograde perfusion with a 135 mM NaCl solution reduced the decrease of early proximal flow rate (VEP) by 2.7 +/- 0.76 (P < 0.02) and 4.2 +/- 0.8 nl/min (P < 0.01) compared with perfusion without BaCl2. Retrograde perfusion with 38 mM NaCl + 5 mM KCl reduced VEP by 10.4 +/- 1.3 nl/min, whereas 40 mM NaCl + 1.5 mM BaCl2 caused a reduction by only 6.1 +/- 1.4 nl/min (P < 0.001). In contrast to the inhibition caused by retrograde perfusion with low concentrations of BaCl2, increased vasoconstriction was seen during retrograde perfusion with 5 mM BaCl2 or during orthograde perfusion with 10 mM BaCl2. The addition of 10(-4) M furosemide to a solution containing 5 mM BaCl2 largely blocked the increased vasoconstrictor response. Peritubular perfusion with a solution containing 5 mM BaCl2 caused a fall in stop-flow pressure in an adjacent nephron by 10.7 +/- 1.5 mmHg (P < 0.001). These results indicate that under our experimental conditions Ba ions exert a dual effect on vascular responses to changes in luminal NaCl concentration.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 292 (6) ◽  
pp. F1867-F1872 ◽  
Author(s):  
Ruisheng Liu ◽  
Jeffrey L. Garvin ◽  
YiLin Ren ◽  
Patrick J. Pagano ◽  
Oscar A. Carretero

Superoxide (O2−) enhances tubuloglomerular feedback by scavenging nitric oxide at the macula densa. However, the singling pathway of O2− production in the macula densa is not known. We hypothesized that the increase in tubular NaCl concentration that initiates tubuloglomerular feedback induces O2− production by the macula densa via NAD(P)H oxidase, which is activated by macula densa depolarization. We isolated and microperfused the thick ascending limb of the loop of Henle and attached macula densa in rabbits. A fluorescent dye, dihydroethidium, was used to detect O2− production at the macula densa. When luminal NaCl was switched from 10 to 80 mM, a situation of initiating maximum tubuloglomerular feedback response, O2− production significantly increased. To make sure that the shifts in the oxyethidium/dihydroethidium ratio were due to changes in O2−, we used tempol (10−4 M), a stable membrane-permeant superoxide dismutase mimetic. With tempol present, when we switched from 10 to 80 mM NaCl, the increase in oxyethidium/dihydroethidium ratio was blocked. To determine the source of O2−, we used the NAD(P)H oxidase inhibitor apocynin. When luminal NaCl was switched from 10 to 80 mM in the presence of apocynin, O2− production was inhibited by 80%. To see whether the effect of increasing luminal NaCl involves Na-K-2Cl cotransporters, we inhibited them with furosemide. When luminal NaCl was switched from 10 to 80 mM in the presence of furosemide, O2− production was blocked. To test whether depolarization of the macula densa induces O2− production, we artificially induced depolarization by adding valinomycin (10−6 M) and 25 mM KCl to the luminal perfusate. Depolarization alone significantly increases O2− production. We conclude that increasing luminal NaCl induces O2− production during tubuloglomerular feedback. O2− generated by the macula densa is primarily derived from NAD(P)H oxidase and is induced by depolarization.


1990 ◽  
Vol 259 (2) ◽  
pp. F246-F250 ◽  
Author(s):  
C. Barlet-Bas ◽  
L. Cheval ◽  
C. Khadouri ◽  
S. Marsy ◽  
A. Doucet

The sensitivity of Na(+)-K(+)-ATPase to Na was determined in single segments of rabbit nephron isolated by microdissection. In the cortical collecting tubule (CCT), Na(+)-K(+)-ATPase was threefold more sensitive to Na (apparent K0.5 approximately 3 mM) than in proximal convoluted tubule and cortical thick ascending limb (apparent K0.5 approximately 10 mM). Furthermore, increasing K concentration from 5 to greater than 100 mM markedly reduced the affinity of the pump for Na in all three nephron segments. In fact, the main shift in Na affinity occurred when K changed from 100 to 120 mM; in the CCT, increasing K concentration from 100 to 120 mM while maintaining Na concentration at 10 mM reduced Na(+)-K(+)-ATPase activity by greater than 35%. These findings confirm that, in kidney cells as in other cells, intracellular Na limits the rate of Na(+)-K(+)-ATPase. Thus any alteration of intracellular Na concentration modifies the pump activity in a way that contributes to the restoration of intracellular Na homeostasis. This adaptive property is particularly efficient in the collecting tubule in which the apparent K0.5 of the pump for Na is close to normal intracellular Na concentration. Furthermore, changes in intracellular K concentration, which usually accompany those of Na so as to maintain the total cation concentration constant, potentiate the regulatory role of Na through modifications of its affinity for the pump.


2004 ◽  
Vol 66 (4) ◽  
pp. 1479-1485 ◽  
Author(s):  
Yilin Ren ◽  
Jeffrey L. Garvin ◽  
Ruisheng Liu ◽  
Oscar A. Carretero

2002 ◽  
Vol 282 (6) ◽  
pp. H1961-H1969 ◽  
Author(s):  
Qun Chen ◽  
Amadou K. S. Camara ◽  
Jianzhong An ◽  
Matthias L. Riess ◽  
Enis Novalija ◽  
...  

Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17°C hypothermic ischemia on cardiac cytosolic [Ca2+], mechanical and metabolic function, and infarct size, and 2) the potential role of KATP channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca2+] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 ± 2 (SE)% to 15 ± 1% with IPC. Bracketing ischemic pulses with 200 μM 5-hydroxydecanoic acid or 10 μM glibenclamide increased infarct size to 28 ± 3% and 26 ± 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca2+] loading and enhanced ATP-sensitive K channel opening.


1994 ◽  
Vol 267 (4) ◽  
pp. F624-F631 ◽  
Author(s):  
M. Lu ◽  
L. E. Barber ◽  
J. L. Renfro

The role of apical membrane electrical potential, the possibility of K+ channel involvement, and the role of extracellular Ca2+ in transepithelial P(i) secretion were examined in primary monolayer cultures of flounder renal proximal tubule cells in Ussing chambers. Exposure to 200 nM thapsigargin (TG) significantly increased net P(i) secretion. In TG-stimulated tissues, substitution of 100 mM KCl for 100 mM NaCl in the luminal medium depolarized the apical membrane potential from -64 +/- 2.8 to -26 +/- 3.9 mV and strongly inhibited net P(i) secretion. In 32P(i)-preloaded tissues, cell-to-lumen exit of 32P(i) was significantly decreased to approximately 50% of control by high luminal K+ while cell-to-peritubular bath movement was unchanged. Addition of BaCl2 (2 mM) or charybdotoxin (20 nM) to the luminal surface significantly reduced TG-stimulated net P(i) secretion. The elevation of bath Ca2+ from 2 to 5 mM significantly increased secretory flux and decreased reabsorptive flux. The effect of TG on net P(i) secretion was reduced by the Ca2+ channel blocker verapamil (VE, 100 microM) to 65% of control and by calmodulin antagonist W-7 (20 microM) to 35% of control but it was not blocked by the protein kinase inhibitor H-7 (100 microM). VE also significantly inhibited the P(i) secretion induced by acidification of the peritubular bathing medium. The data indicate that transepithelial P(i) secretion induced by TG is significantly influenced by apical membrane electrical polarity, which may be regulated in part by Ca(2+)-activated K+ channels.


2015 ◽  
Vol 308 (11) ◽  
pp. F1288-F1296 ◽  
Author(s):  
Chengbiao Zhang ◽  
Lijun Wang ◽  
Xiao-Tong Su ◽  
Dao-Hong Lin ◽  
Wen-Hui Wang

The aim of the present study is to examine the role of Kcnj10 (Kir.4.1) in contributing to the basolateral K conductance in the cortical thick ascending limb (cTAL) using Kcnj10+/+ wild-type (WT) and Kcnj10−/− knockout (KO) mice. The patch-clamp experiments detected a 40- and an 80-pS K channel in the basolateral membrane of the cTAL. Moreover, the probability of finding the 40-pS K was significantly higher in the late part of the cTAL close to the distal convoluted tubule than those in the initial part. Immunostaining showed that Kcnj10 staining was detected in the basolateral membrane of the cTAL but the expression was not uniformly distributed. The disruption of Kcnj10 completely eliminated the 40-pS K channel but not the 80-pS K channel, suggesting the role of Kcnj10 in forming the 40-pS K channel of the cTAL. Also, the disruption of Kcnj10 increased the probability of finding the 80-pS K channel in the cTAL, especially in the late part of the cTAL. Because the channel open probability of the 80-pS K channel in KO was similar to those of WT mice, the increase in the 80-pS K channel may be achieved by increasing K channel number. The whole cell recording further showed that K reversal potential measured with 5 mM K in the bath and 140 mM K in the pipette was the same in the WT and KO mice. Moreover, Western blot and immunostaining showed that the disruption of Kcnj10 did not affect the expression of Na-K-Cl cotransporter 2 (NKCC2). We conclude that Kir.4.1 is expressed in the basolateral membrane of cTAL and that the disruption of Kir.4.1 has no significant effect on the membrane potential of the cTAL and NKCC2 expression.


2010 ◽  
Vol 298 (6) ◽  
pp. F1465-F1471 ◽  
Author(s):  
Deyin Lu ◽  
Yiling Fu ◽  
Arnaldo Lopez-Ruiz ◽  
Rui Zhang ◽  
Ramiro Juncos ◽  
...  

Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-β is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-α, nNOS-β, and nNOS-γ were measured in the macula densa cells isolated with laser capture microdissection. Three splice variants of nNOS, α-, β-, and γ-mRNAs, were detected in the macula densa cells. After 10 days of high-salt intake, nNOS-α decreased markedly, whereas nNOS-β increased two- to threefold in the macula densa measured with real-time PCR and in the renal cortex measured with Western blot. NO production in the macula densa was measured in the perfused thick ascending limb with an intact macula densa plaque with a fluorescent dye DAF-FM. When the tubular perfusate was switched from 10 to 80 mM NaCl, a maneuver to induce TGF, NO production by the macula densa was increased by 38 ± 3% in normal-salt rats and 52 ± 6% ( P < 0.05) in the high-salt group. We found 1) macula densa cells express nNOS-α, nNOS-β, and nNOS-γ, 2) a high-salt diet enhances nNOS-β, and 3) TGF-induced NO generation from macula densa is enhanced in high-salt diet possibly from nNOS-β. In conclusion, we found that the splice variants of nNOS expressed in macula densa cells were α-, β-, and γ-isoforms and propose that enhanced level of nNOS-β during high-salt intake may contribute to macula densa NO production and help attenuate TGF.


Sign in / Sign up

Export Citation Format

Share Document