Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats

2004 ◽  
Vol 286 (5) ◽  
pp. F922-F935 ◽  
Author(s):  
Soo Wan Kim ◽  
Weidong Wang ◽  
Jakob Nielsen ◽  
Jeppe Praetorius ◽  
Tae-Hwan Kwon ◽  
...  

Nephrotic syndrome is often accompanied by sodium retention and generalized edema. However, the molecular basis for the decreased renal sodium excretion remains undefined. We hypothesized that epithelial Na channel (ENaC) subunit dysregulation may be responsible for the increased sodium retention. An experimental group of rats was treated with puromycin aminonucleoside (PAN; 180 mg/kg iv), whereas the control group received only vehicle. After 7 days, PAN treatment induced significant proteinuria, hypoalbuminemia, decreased urinary sodium excretion, and extensive ascites. The protein abundance of α-ENaC and β-ENaC was increased in the inner stripe of the outer medulla (ISOM) and in the inner medulla (IM) but was not altered in the cortex. γ-ENaC abundance was increased in the cortex, ISOM, and IM. Immunoperoxidase brightfield- and laser-scanning confocal fluorescence microscopy demonstrated increased targeting of α-ENaC, β-ENaC, and γ-ENaC subunits to the apical plasma membrane in the distal convoluted tubule (DCT2), connecting tubule, and cortical and medullary collecting duct segments. Immunoelectron microscopy further revealed an increased labeling of α-ENaC in the apical plasma membrane of cortical collecting duct principal cells of PAN-treated rats, indicating enhanced apical targeting of α-ENaC subunits. In contrast, the protein abundances of Na+/H+ exchanger type 3 (NHE3), Na+-K+-2Cl- cotransporter (BSC-1), and thiazide-sensitive Na+-Cl- cotransporter (TSC) were decreased. Moreover, the abundance of the α1-subunit of the Na-K-ATPase was decreased in the cortex and ISOM, but it remained unchanged in the IM. In conclusion, the increased or sustained expression of ENaC subunits combined with increased apical targeting in the DCT2, connecting tubule, and collecting duct are likely to play a role in the sodium retention associated with PAN-induced nephrotic syndrome. The decreased abundance of NHE3, BSC-1, TSC, and Na-K-ATPase may play a compensatory role to promote sodium excretion.

2006 ◽  
Vol 290 (3) ◽  
pp. F674-F687 ◽  
Author(s):  
Soo Wan Kim ◽  
Sophie de Seigneux ◽  
Martin C. Sassen ◽  
JongUn Lee ◽  
Jin Kim ◽  
...  

Nephrotic syndrome is often accompanied by sodium retention and generalized edema. We hypothesize that dysregulation of the epithelial sodium channel (ENaC) and/or of sodium (co)transporters may be responsible for the increased sodium retention associated with HgCl2-induced nephropathy. In addition, we examined the hypothesis that the expression of type 2 11β-hydroxysteroid dehydrogenase (11βHSD2) is reduced, contributing to the enhanced mineralocorticoid activity. Membranous nephropathy was induced in Brown Norway rats by repeated injections of HgCl2 (1 mg/kg sc), whereas the control group received only vehicle. After 13 days of treatment, the abundance of ENaC subunits, sodium (co)transporters, and 11βHSD2 in the kidney was examined by immunoblotting and immunohistochemistry. HgCl2 treatment induced marked proteinuria, hypoalbuminemia, decreased urinary sodium excretion, and ascites. The protein abundance of α-ENaC was increased in the cortex/outer stripe of outer medulla (OSOM) and inner stripe of the outer medulla (ISOM). The protein abundances of β-ENaC and γ-ENaC were decreased in the cortex/OSOM while increased in the ISOM. Immunoperoxidase microscopy demonstrated increased targeting of ENaC subunits to the apical plasma membrane in the distal convoluted tubule, connecting tubule, and cortical and medullary collecting duct segments. Moreover, 11βHSD2 abundance was decreased in cortex/OSOM and ISOM. The protein abundances of type 3 Na/H exchanger (NHE3), Na-K-2Cl cotransporter (NKCC2), and thiazide-sensitive Na-Cl cotransporter (NCC) were decreased. Moreover, the abundance of the α-1 subunit of the Na-K-ATPase was decreased in the cortex/OSOM and ISOM but remained unchanged in the inner medulla. These results suggest that increased apical targeting of ENaC subunits combined with diminished abundance of 11βHSD2 may contribute to sodium retention associated with HgCl2-induced nephrotic syndrome. The decreased abundance of NHE3, NKCC2, NCC, and Na-K-ATPase may play a compensatory role in promoting sodium excretion.


2000 ◽  
Vol 11 (4) ◽  
pp. 604-615 ◽  
Author(s):  
GEORGES DESCHÊNES ◽  
ALAIN DOUCET

Abstract. In puromycin aminonucleoside (PAN)-treated nephrotic rats, sodium retention is associated with increased Na+/K+-ATPase activity in the cortical collecting ducts (CCD). This study was undertaken to determine whether stimulation of Na+/K+-ATPase in the CCD is a feature of other experimental nephrotic syndromes, whether it might be responsible for renal sodium retention, and whether it is mediated by increased plasma vasopressin levels or activation of calcineurin. For this purpose, the time courses of urinary excretion of sodium and protein, sodium balance, ascites, and Na+/K+-ATPase activities in microdissected CCD were studied in rats with PAN or adriamycin nephrosis or HgCl2nephropathy. The role of vasopressin and calcineurin in PAN nephrosis were evaluated by measuring these parameters in Brattleboro rats and in rats treated with cyclosporin or tacrolimus. Despite different patterns of changes in urinary sodium and protein excretion in the three nephrotic syndrome models, there was a linear relationship between CCD Na+/K+-ATPase activities and sodium excretion in all three cases. The results also indicated that there was no correlation between proteinuria and sodium retention, but ascites was present only when proteinuria was associated with marked reduction of sodium excretion. Finally, the lack of vasopressin in Brattleboro rats or the inhibition of calcineurin by administration of either cyclosporin or tacrolimus did not prevent development of the nephrotic syndrome in PAN-treated rats or stimulation of CCD Na+/K+-ATPase. It is concluded that stimulation of Na+/K+-ATPase in the CCD of nephrotic rats might be responsible for sodium retention and that this phenomenon is independent of proteinuria and vasopressin and calcineurin activities.


1989 ◽  
Vol 256 (2) ◽  
pp. F366-F369 ◽  
Author(s):  
D. Brown ◽  
E. J. Sorscher ◽  
D. A. Ausiello ◽  
D. J. Benos

Amiloride-sensitive Na+ channels were localized in semithin frozen sections of rat renal medullary collecting ducts, using polyclonal antibodies directed against purified bovine kidney Na+ channel protein. The apical plasma membrane of collecting duct principal cells was heavily stained by indirect immunofluorescence, whereas intercalated cells were negative. Basolateral plasma membranes of both cell types were unstained, as were subapical vesicles in the cytoplasm of these cells. In the thick ascending limb of Henle, some scattered granular fluorescence was seen in the cytoplasm and close to the apical pole of epithelial cells, suggesting the presence of antigenic sites associated with some membrane domains in these cells. No staining was detected in thin limbs of Henle, or in proximal tubules in the outer medulla. These results show that amiloride-sensitive sodium channels are located predominantly on the apical plasma membrane of medullary collecting duct principal cells, the cells that are involved in Na+ homeostasis in this region of the kidney.


2001 ◽  
Vol 280 (4) ◽  
pp. F715-F726 ◽  
Author(s):  
Lene N. Nejsum ◽  
Tae-Hwan Kwon ◽  
David Marples ◽  
Allan Flyvbjerg ◽  
Mark A. Knepper ◽  
...  

Diabetes mellitus (DM) is associated with osmotic diuresis and natriuresis. At day 15, rats with DM induced by streptozotocin ( n = 13) had severe hyperglycemia (27.1 ± 0.4 vs. 4.7 ± 0.1 mM in controls) and had a fivefold increase in water intake (123 ± 5 vs. 25 ± 2 ml/day) and urine output. Semiquantitative immunoblotting revealed a significant increase in inner medullary AQP2 (201 ± 12% of control rats, P < 0.05) and phosphorylated (Ser256) AQP2 (p-AQP2) abundance (299 ± 32%) in DM rats. Also, the abundance of inner medullary AQP3 was markedly increased to 171 ± 19% of control levels (100 ± 4%, n = 7, P < 0.05). In contrast, the abundance of whole kidney AQP1 (90 ± 3%) and inner medullary AQP4 (121 ± 16%) was unchanged in rats with DM. Immunoelectron microscopy further revealed an increased labeling of AQP2 in the apical plasma membrane of collecting duct principal cells (with less labeling in the intracellular vesicles) of DM rats, indicating enhanced trafficking of AQP2 to the apical plasma membrane. There was a marked increase in urinary sodium excretion in DM. Only Na+/H+ exchanger NHE3 was downregulated (67 ± 10 vs. 100 ± 11%) whereas there were no significant changes in abundance of type 2 Na-phosphate cotransporter (128 ± 6 vs. 100 ± 10%); the Na-K-2Cl cotransporter (125 ± 19 vs. 100 ± 10%); the thiazide-sensitive Na-Cl cotransporter (121 ± 9 vs. 100 ± 10%); the α1-subunit of the Na-K-ATPase (106 ± 7 vs. 100 ± 5%); and the proximal tubule Na-HCO3 cotransporter (98 ± 16 vs. 100 ± 7%). In conclusion, DM rats had an increased AQP2, p-AQP2, and AQP3 abundance as well as high AQP2 labeling of the apical plasma membrane, which is likely to represent a vasopressin-mediated compensatory increase in response to the severe polyuria. In contrast, there were no major changes in the abundance of AQP1, AQP4, and several major proximal and distal tubule Na+ transporters except NHE3 downregulation, which may participate in the increased sodium excretion.


2003 ◽  
Vol 104 (4) ◽  
pp. 389-395 ◽  
Author(s):  
A. AUDIGÉ ◽  
Z.R. YU ◽  
B.M. FREY ◽  
D.E. UEHLINGER ◽  
F.J. FREY ◽  
...  

In experimental nephrotic syndrome, urinary sodium excretion is decreased during the early phase of the disease. The molecular mechanism(s) leading to salt retention has not been completely elucidated. The rate-limiting constituent of collecting duct sodium transport is the epithelial sodium channel (ENaC). We examined the abundance of ENaC subunit mRNAs and proteins in puromycin aminonucleoside (PAN)-induced nephrotic syndrome. The time courses of urinary sodium excretion, plasma aldosterone concentration and proteinuria were studied in male Sprague–Dawley rats treated with a single dose of either PAN or vehicle. The relative amounts of αENaC, βENaC and γENaC mRNAs were determined in kidneys from these rats by real-time quantitative TaqMan PCR, and the amounts of proteins by Western blot. The kinetics of urinary sodium excretion and the appearance of proteinuria were comparable with those reported previously. Sodium retention occurred on days 2, 3 and 6 after PAN injection. A significant up-regulation of αENaC and βENaC mRNA abundance on days 1 and 2 preceded sodium retention on days 2 and 3. Conversely, down-regulation of αENaC, βENaC and γENaC mRNA expression on day 3 occurred in the presence of high aldosterone concentrations, and was followed by a return of sodium excretion to control values. The amounts of αENaC, βENaC and γENaC proteins were not increased during PAN-induced sodium retention. In conclusion, ENaC mRNA expression, especially αENaC, is increased in the very early phase of the experimental model of PAN-induced nephrotic syndrome in rats, but appears to escape from the regulation by aldosterone after day 3.


2002 ◽  
Vol 283 (4) ◽  
pp. F744-F754 ◽  
Author(s):  
Young-Hee Kim ◽  
Tae-Hwan Kwon ◽  
Sebastian Frische ◽  
Jin Kim ◽  
C. Craig Tisher ◽  
...  

Recent studies have demonstrated that a novel anion exchanger, pendrin, is expressed in the apical domain of type B intercalated cells in the mammalian collecting duct. The purpose of this study was 1) to determine the expression and distribution of pendrin along the collecting duct and connecting tubule of mouse and rat kidney and establish whether pendrin is expressed in the non-A-non-B intercalated cells and 2) to determine the intracellular localization of pendrin in the different populations of intercalated cells by immunoelectron microscopy. A peptide-derived affinity-purified antibody was generated that specifically recognized pendrin in immunoblots of rat and mouse kidney. Immunohistochemistry and confocal laser scanning microscopy demonstrated the presence of pendrin in apical domains of all type B intercalated cells in mouse and rat connecting tubule and collecting duct. In addition, strong pendrin immunostaining was observed in non-A-non-B intercalated cells. There was no labeling of type A intercalated cells. Immunoelectron microscopy demonstrated that pendrin was located in the apical plasma membrane and intracellular vesicles of both type B intercalated cells and non-A-non-B cells; the latter was identified by the presence of H+-ATPase in the apical plasma membrane. The results of this study demonstrate that both pendrin and H+-ATPase are expressed in the apical plasma membrane of non-A-non-B intercalated cells, suggesting that these cells are capable of both HCO[Formula: see text] and proton secretion. Furthermore, the presence of pendrin in both the apical plasma membrane and the apical intracellular vesicles of type B and non-A-non-B intercalated cells suggests that HCO[Formula: see text] secretion may be regulated by trafficking of pendrin between the two membrane compartments.


2000 ◽  
Vol 278 (2) ◽  
pp. F327-F336 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Alexander Pushkin ◽  
Natalia Abuladze ◽  
Søren Nielsen ◽  
Ira Kurtz

In the present study, we produced a rabbit peptide-derived polyclonal COOH-terminal antibody that selectively recognizes NBC3, to determine the cellular and subcellular localization of NBC3 in rat kidney, using immunocytochemistry and immunoelectron microscopy. Immunocytochemistry with cryostat sections and semithin cryosections revealed specific staining of intercalated cells (ICs) in the connecting tubule and in cortical, outer medullary, and initial inner medullary collecting ducts. In the connecting tubule and in the cortical and medullary collecting duct, the labeling was associated with both type A and type B ICs. In type A ICs, labeling was confined to the apical and subapical domains, whereas in type B ICs, basal domains were exclusively labeled. In contrast, collecting duct principal cells were consistently unlabeled, and this was confirmed using anti-aquaporin-2 antibodies, which labeled principal cells in parallel semithin cryosections. Glomeruli, proximal tubules, descending thin limbs, ascending thin limbs, thick ascending limbs, distal convoluted tubules, and vascular structures were unlabeled. For immunoelectron microscopy, tissue samples were freeze-substituted, and immunolabeling was performed on ultrathin Lowicryl HM20 sections. Immunoelectron microscopy demonstrated that NBC3 labeling was very abundant in the apical plasma membrane, in intracellular vesicles, and in tubulocisternal profiles in the subapical domains of type A ICs. In type B ICs, NBC3 was mainly present in the basolateral plasma membrane. Immunolabeling controls using peptide-absorbed antibody were consistently negative. In conclusion, NBC3 is highly abundant in the apical plasma membrane of type A ICs and in the basolateral plasma membrane of type B ICs. This suggests that NBC3 plays an important role in modulating bicarbonate transport in the connecting tubule and collecting duct.


2012 ◽  
Vol 302 (10) ◽  
pp. F1325-F1330 ◽  
Author(s):  
Meghana M. Pandit ◽  
Kevin A. Strait ◽  
Toshio Matsuda ◽  
Donald E. Kohan

Collecting duct (CD) endothelin-1 (ET-1) is an important autocrine inhibitor of Na and water transport. CD ET-1 production is stimulated by extracellular fluid volume expansion and tubule fluid flow, suggesting a mechanism coupling CD Na delivery and ET-1 synthesis. A mouse cortical CD cell line, mpkCCDc14, was subjected to static or flow conditions for 2 h at 2 dyn/cm2, followed by determination of ET-1 mRNA content. Flow with 300 mosmol/l NaCl increased ET-1 mRNA to 65% above that observed under static conditions. Increasing perfusate osmolarity to 450 mosmol/l with NaCl or Na acetate increased ET-1 mRNA to ∼184% compared with no flow, which was not observed when osmolarity was increased using mannitol or urea. Reducing Na concentration to 150 mosmol/l while maintaining total osmolarity at 300 mosmol/l with urea or mannitol decreased the flow response. Inhibition of epithelial Na channel (ENaC) with amiloride or benzamil abolished the flow response, suggesting involvement of ENaC in flow-regulated ET-1 synthesis. Aldosterone almost doubled the flow response. Since Ca2+ enhances CD ET-1 production, the involvement of plasma membrane and mitochondrial Na/Ca2+ exchangers (NCX) was assessed. SEA0400 and KB-R7943, plasma membrane NCX inhibitors, did not affect the flow response. However, CGP37157, a mitochondrial NCX inhibitor, abolished the response. In summary, the current study indicates that increased Na delivery, leading to ENaC-mediated Na entry and mitochondrial NCX activity, is involved in flow-stimulated CD ET-1 synthesis. This constitutes the first report of either ENaC or mitochondrial NCX regulation of an autocrine factor in any biologic system.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


2020 ◽  
Vol 318 (4) ◽  
pp. F956-F970 ◽  
Author(s):  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Kit Yee Wong ◽  
Chan-Wei Yang ◽  
Chin-Fu Liu ◽  
...  

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


Sign in / Sign up

Export Citation Format

Share Document