Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney

2002 ◽  
Vol 283 (4) ◽  
pp. F744-F754 ◽  
Author(s):  
Young-Hee Kim ◽  
Tae-Hwan Kwon ◽  
Sebastian Frische ◽  
Jin Kim ◽  
C. Craig Tisher ◽  
...  

Recent studies have demonstrated that a novel anion exchanger, pendrin, is expressed in the apical domain of type B intercalated cells in the mammalian collecting duct. The purpose of this study was 1) to determine the expression and distribution of pendrin along the collecting duct and connecting tubule of mouse and rat kidney and establish whether pendrin is expressed in the non-A-non-B intercalated cells and 2) to determine the intracellular localization of pendrin in the different populations of intercalated cells by immunoelectron microscopy. A peptide-derived affinity-purified antibody was generated that specifically recognized pendrin in immunoblots of rat and mouse kidney. Immunohistochemistry and confocal laser scanning microscopy demonstrated the presence of pendrin in apical domains of all type B intercalated cells in mouse and rat connecting tubule and collecting duct. In addition, strong pendrin immunostaining was observed in non-A-non-B intercalated cells. There was no labeling of type A intercalated cells. Immunoelectron microscopy demonstrated that pendrin was located in the apical plasma membrane and intracellular vesicles of both type B intercalated cells and non-A-non-B cells; the latter was identified by the presence of H+-ATPase in the apical plasma membrane. The results of this study demonstrate that both pendrin and H+-ATPase are expressed in the apical plasma membrane of non-A-non-B intercalated cells, suggesting that these cells are capable of both HCO[Formula: see text] and proton secretion. Furthermore, the presence of pendrin in both the apical plasma membrane and the apical intracellular vesicles of type B and non-A-non-B intercalated cells suggests that HCO[Formula: see text] secretion may be regulated by trafficking of pendrin between the two membrane compartments.

2003 ◽  
Vol 284 (1) ◽  
pp. F229-F241 ◽  
Author(s):  
Susan M. Wall ◽  
Kathryn A. Hassell ◽  
Ines E. Royaux ◽  
Eric D. Green ◽  
Judy Y. Chang ◽  
...  

Pendrin is an anion exchanger expressed in type B intercalated cells of the cortical collecting duct (CCD). Whether pendrin localizes to other nephron segments with intercalated cells is unknown. Moreover, whether pendrin is expressed in proximal tubule is debated. Thus the distribution of pendrin mRNA and protein expression in mouse kidney was investigated by using light and electron microscopic immunohistochemistry and quantitative real-time PCR. We observed that pendrin mRNA is expressed mainly in cortex. Within cortex, pendrin mRNA is at least fivefold higher in CCD and the connecting tubule (CNT) than in the other segments. Pendrin protein was observed in a subset of cells within the distal convoluted tubule as well as in type B and in non-A-non-B intercalated cells of the CNT and CCD. In type B intercalated cells, pendrin immunoreactivity was highest in apical cytoplasmic vesicles with little immunolabel along the apical plasma membrane. In non-A-non-B intercalated cells, intense pendrin immunoreactivity was detected along the apical plasma membrane. These differences in the subcellular distribution of pendrin immunolabel were confirmed by morphometric analysis. In conclusion, pendrin is expressed in the mouse distal convoluted tubule, CCD, and CNT along the apical plasma membrane of non-A-non-B intercalated cells and in subapical cytoplasmic vesicles of type B intercalated cells.


2000 ◽  
Vol 278 (2) ◽  
pp. F327-F336 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Alexander Pushkin ◽  
Natalia Abuladze ◽  
Søren Nielsen ◽  
Ira Kurtz

In the present study, we produced a rabbit peptide-derived polyclonal COOH-terminal antibody that selectively recognizes NBC3, to determine the cellular and subcellular localization of NBC3 in rat kidney, using immunocytochemistry and immunoelectron microscopy. Immunocytochemistry with cryostat sections and semithin cryosections revealed specific staining of intercalated cells (ICs) in the connecting tubule and in cortical, outer medullary, and initial inner medullary collecting ducts. In the connecting tubule and in the cortical and medullary collecting duct, the labeling was associated with both type A and type B ICs. In type A ICs, labeling was confined to the apical and subapical domains, whereas in type B ICs, basal domains were exclusively labeled. In contrast, collecting duct principal cells were consistently unlabeled, and this was confirmed using anti-aquaporin-2 antibodies, which labeled principal cells in parallel semithin cryosections. Glomeruli, proximal tubules, descending thin limbs, ascending thin limbs, thick ascending limbs, distal convoluted tubules, and vascular structures were unlabeled. For immunoelectron microscopy, tissue samples were freeze-substituted, and immunolabeling was performed on ultrathin Lowicryl HM20 sections. Immunoelectron microscopy demonstrated that NBC3 labeling was very abundant in the apical plasma membrane, in intracellular vesicles, and in tubulocisternal profiles in the subapical domains of type A ICs. In type B ICs, NBC3 was mainly present in the basolateral plasma membrane. Immunolabeling controls using peptide-absorbed antibody were consistently negative. In conclusion, NBC3 is highly abundant in the apical plasma membrane of type A ICs and in the basolateral plasma membrane of type B ICs. This suggests that NBC3 plays an important role in modulating bicarbonate transport in the connecting tubule and collecting duct.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


2000 ◽  
Vol 278 (1) ◽  
pp. F29-F42 ◽  
Author(s):  
Birgitte Mønster Christensen ◽  
Marina Zelenina ◽  
Anita Aperia ◽  
Søren Nielsen

Phosphorylation of Ser256, in a PKA consensus site, in AQP2 (p-AQP2) appears to be critically involved in the vasopressin-induced trafficking of AQP2. In the present study, affinity-purified antibodies that selectively recognize AQP2 phosphorylated at Ser256 were developed. These antibodies were used to determine 1) the subcellular localization of p-AQP2 in rat kidney and 2) changes in distribution and/or levels of p-AQP2 in response to [desamino-Cys1,d-Arg8]vasopressin (DDAVP) treatment or V2-receptor blockade. Immunoelectron microscopy revealed that p-AQP2 was localized in both the apical plasma membrane and in intracellular vesicles of collecting duct principal cells. Treatment of rats with V2-receptor antagonist for 30 min resulted in almost complete disappearance of p-AQP2 labeling of the apical plasma membrane with only marginal labeling of intracellular vesicles remaining. Immunoblotting confirmed a marked decrease in p-AQP2 levels. In control Brattleboro rats (BB), lacking vasopressin secretion, p-AQP2 labeling was almost exclusively present in intracellular vesicles. Treatment of BB rats with DDAVP for 2 h induced a 10-fold increase in p-AQP2 labeling of the apical plasma membrane. The overall abundance of p-AQP2, however, was not increased, as determined both by immunoelectron microscopy and immunoblotting. Consistent with this, 2 h of DDAVP treatment of normal rats also resulted in unchanged p-AQP2 levels. Thus the results demonstrate that AQP2 phosphorylated in Ser256 is present in the apical plasma membrane and in intracellular vesicles and that both the intracellular distribution/trafficking, as well as the abundance of p-AQP2, are regulated via V2 receptors by altering phosphorylation and/or dephosphorylation of Ser256in AQP2.


1995 ◽  
Vol 269 (3) ◽  
pp. C655-C664 ◽  
Author(s):  
D. Marples ◽  
M. A. Knepper ◽  
E. I. Christensen ◽  
S. Nielsen

Aquaporin-2 (AQP2) is the predominant vasopressin-regulated water channel of the renal collecting duct. We tested whether vasopressin induces translocation of AQP2 from intracellular vesicles into the apical plasma membrane. AQP2 was quantitated in plasma membrane and intracellular vesicle fractions prepared from the inner medulla of one kidney from each rat before or 20 min after intravenous 1-desamino-8-D-arginine vasopressin (DDAVP) treatment, using immunoblotting and densitometry. Contralateral kidneys were prepared for immunofluorescence and immunoelectron microscopy. Immunoblotting revealed that, compared with untreated controls, DDAVP treatment significantly increased the fraction of AQP2 protein associated with the plasma membrane fraction relative to intracellular vesicles. This increase averaged 2.0-fold in untreated rats and 2.9-fold in rats water loaded for 12 h. Water loading, presumably by suppressing circulating vasopressin levels, decreased the fraction of AQP2 associated with the plasma membrane by 55%, suggesting retrieval of AQP2 from the plasma membrane. In rats sequentially thirsted for 48 h to increase expression and then water loaded for 72 h to minimize plasma membrane labeling, DDAVP caused a 12-fold increase in the plasma membrane to intracellular vesicle labeling ratio. The accentuation of the DDAVP response seen after water loading is consistent with the observed increase in the fraction of AQP2 in the intracellular pool available for insertion. Immunofluorescence confirmed a marked DDAVP-induced redistribution of AQP2 from intracellular to plasma membrane domains. Furthermore, quantitative immunoelectron microscopy demonstrated a 3.4-fold increase in apical plasma membrane to intracellular vesicle labeling ratio. These results provide a direct in vivo demonstration of vasopressin-induced translocation of AQP2 into the apical plasma membrane.


1994 ◽  
Vol 266 (4) ◽  
pp. F633-F645 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
J. K. Cannon ◽  
C. C. Tisher

In normal rabbit, immunolabeling of intercalated cells in the outer medullary collecting duct (OMCD) demonstrates band 3-like protein in the basolateral plasma membrane (15) and H(+)-adenosinetriphosphatase (H(+)-ATPase) in the apical plasma membrane and cytoplasmic vesicles (30). However, in type A intercalated cells in the cortical collecting duct (CCD), band 3-like protein is located primarily in multivesicular bodies and cytoplasmic vesicles (15), whereas H(+)-ATPase is present in cytoplasmic vesicles only in most intercalated cells (30). In this study, we observed the effect of chronic acid loading on immunolocalization of these transporters in the collecting duct. Adult New Zealand White rabbits received either normal tap water (controls) or 75 mM NH4Cl for 12 days plus eight daily gavages of 2-6 meq NH4Cl/kg body wt. At time of death, mean urine pH of acid-loaded animals was 5.96 (SD = 0.69), vs. 8.47 (SD = 0.07) in controls. Kidneys were fixed by in vivo perfusion and processed for light and electron microscopic immunoperoxidase localization of band 3-like protein and immunogold localization of H(+)-ATPase. In controls, band 3-like protein was largely confined to multivesicular bodies in the majority of positive-staining intercalated cells in the CCD and to the basolateral plasma membrane of intercalated cells in the OMCD. In acid-loaded rabbits, band 3 protein-positive intercalated cells in the inner CCD and the in the outer stripe of the OMCD (OMCDo) were strikingly stellate in form. Basolateral plasma membrane label was intensified, while the number of labeled multivesicular bodies was diminished. Morphometric analysis demonstrated an increase in the amount of basolateral plasma membrane in these intercalated cells. In control rabbits, H(+)-ATPase immunoreactivity in intercalated cells in the CCD was located predominantly over cytoplasmic vesicles. A minority of intercalated cells exhibited basolateral plasma membrane label, and only an occasional cell displayed apical plasma membrane label. In acid-loaded rabbits, H(+)-ATPase immunoreactivity was enhanced along the apical plasma membrane of intercalated cells in the inner CCD, and morphometric analysis demonstrated increased apical plasma membrane in band 3-positive intercalated cells in this segment. These results suggest that rabbits respond to acid loading via enhancement of both electrogenic proton secretion and Cl-/HCO3- exchange in intercalated cells in the inner CCD and the OMCDo.


1989 ◽  
Vol 256 (1) ◽  
pp. F1-F12 ◽  
Author(s):  
D. Brown

The plasma membrane composition of virtually all eucaryotic cells is established, maintained, and modified by the process of membrane recycling. Specific plasma membrane components are inserted by exocytosis of transport vesicles, and are removed by endocytosis of segments of the membrane in which particular proteins are concentrated. In the kidney collecting duct, vasopressin induces the cycling of vesicles that are thought to carry water channels to and from the apical plasma membrane of principal cells, thus modulating the water permeability of this membrane. In the intercalated cells of the collecting duct, hydrogen ion secretion is controlled by the recycling of vesicles carrying proton pumps to and from the plasma membrane. In both cell types, "coated" carrier vesicles are involved, but whereas clathrin-coated vesicles participate in water channel recycling, the vesicles in intercalated cells are coated with the cytoplasmic domains of proton pumps. Following a brief outline of membrane recycling in general, this review summarizes previous data on membrane recycling in the collecting duct and related transporting epithelia and discusses some selected points relating to the role of membrane recycling and cell-specific function in the collecting duct.


1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


2001 ◽  
Vol 280 (4) ◽  
pp. F715-F726 ◽  
Author(s):  
Lene N. Nejsum ◽  
Tae-Hwan Kwon ◽  
David Marples ◽  
Allan Flyvbjerg ◽  
Mark A. Knepper ◽  
...  

Diabetes mellitus (DM) is associated with osmotic diuresis and natriuresis. At day 15, rats with DM induced by streptozotocin ( n = 13) had severe hyperglycemia (27.1 ± 0.4 vs. 4.7 ± 0.1 mM in controls) and had a fivefold increase in water intake (123 ± 5 vs. 25 ± 2 ml/day) and urine output. Semiquantitative immunoblotting revealed a significant increase in inner medullary AQP2 (201 ± 12% of control rats, P < 0.05) and phosphorylated (Ser256) AQP2 (p-AQP2) abundance (299 ± 32%) in DM rats. Also, the abundance of inner medullary AQP3 was markedly increased to 171 ± 19% of control levels (100 ± 4%, n = 7, P < 0.05). In contrast, the abundance of whole kidney AQP1 (90 ± 3%) and inner medullary AQP4 (121 ± 16%) was unchanged in rats with DM. Immunoelectron microscopy further revealed an increased labeling of AQP2 in the apical plasma membrane of collecting duct principal cells (with less labeling in the intracellular vesicles) of DM rats, indicating enhanced trafficking of AQP2 to the apical plasma membrane. There was a marked increase in urinary sodium excretion in DM. Only Na+/H+ exchanger NHE3 was downregulated (67 ± 10 vs. 100 ± 11%) whereas there were no significant changes in abundance of type 2 Na-phosphate cotransporter (128 ± 6 vs. 100 ± 10%); the Na-K-2Cl cotransporter (125 ± 19 vs. 100 ± 10%); the thiazide-sensitive Na-Cl cotransporter (121 ± 9 vs. 100 ± 10%); the α1-subunit of the Na-K-ATPase (106 ± 7 vs. 100 ± 5%); and the proximal tubule Na-HCO3 cotransporter (98 ± 16 vs. 100 ± 7%). In conclusion, DM rats had an increased AQP2, p-AQP2, and AQP3 abundance as well as high AQP2 labeling of the apical plasma membrane, which is likely to represent a vasopressin-mediated compensatory increase in response to the severe polyuria. In contrast, there were no major changes in the abundance of AQP1, AQP4, and several major proximal and distal tubule Na+ transporters except NHE3 downregulation, which may participate in the increased sodium excretion.


1983 ◽  
Vol 245 (6) ◽  
pp. F670-F679 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The collecting duct of the mammalian kidney is involved in urine acidification. Recent studies in the turtle bladder suggest that hydrogen ion secretion in response to elevated CO2 is regulated by insertion of hydrogen pumps into the luminal membrane of the mitochondria-rich cells. Because intercalated cells of the collecting duct are structurally similar to mitochondria-rich cells of the amphibian bladder, we studied the rat outer medullary collecting duct (OMCD) during respiratory acidosis to determine whether changes compatible with hydrogen ion secretion occur in the intercalated cells. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. After collection of physiologic data, the kidneys were fixed by in vivo perfusion and processed for electron microscopy. No changes were observed in the principal cells of the OMCD. Morphometric analysis revealed a significant increase in the surface density of the apical plasma membrane and a decrease in the number of tubulovesicular profiles in the apical region of the intercalated cells throughout the OMCD with respiratory acidosis. There were no changes in surface density of the basolateral membrane. These findings suggest that in response to respiratory acidosis there is transport of membrane from the tubulovesicular membrane compartment to the apical plasma membrane of the intercalated cells.


Sign in / Sign up

Export Citation Format

Share Document