A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo

2006 ◽  
Vol 290 (6) ◽  
pp. F1367-F1375 ◽  
Author(s):  
H. Thomas Lee ◽  
Michael Jan ◽  
Soo Chan Bae ◽  
Jin Deok Joo ◽  
Farida R. Goubaeva ◽  
...  

The role of renal A1 adenosine receptors (A1AR) in the pathogenesis of radiocontrast nephropathy is controversial. We aimed to further elucidate the role of A1AR in the pathogenesis of radiocontrast nephropathy and determine whether renal proximal tubule A1AR contribute to the radiocontrast nephropathy. To induce radiocontrast nephropathy, A1AR wild-type (WT) or knockout (KO) mice were injected with a nonionic radiocontrast (iohexol, 1.5–3 g iodine/kg). Some A1WT mice were pretreated with 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a selective A1AR antagonist) before iohexol injection. A1AR contribute to the pathogenesis of radiocontrast nephropathy in vivo as the A1WT mice developed significantly worse acute renal failure, more renal cortex vacuolization, and had lower survival 24 h after iohexol treatment compared with the A1KO mice. DPCPX pretreatment also protected the A1WT mice against radiocontrast-induced acute renal failure. No differences in renal cortical apoptosis or inflammation were observed between A1WT and A1KO mice. To determine whether the proximal tubular A1AR mediate the direct renal cytotoxicity of radiocontrast, we treated proximal tubules in culture with iohexol with or without 2-chloro- N6-cyclopentyladenosine (a selective A1AR agonist) or DPCPX pretreatment. We also subjected cultured proximal tubule cells overexpressing A1AR or lacking A1AR to radiocontrast injury. Iohexol caused a direct dose-dependent reduction in proximal tubule cell viability as well as proliferation. Neither the A1AR agonist nor the antagonist treatment affected proximal tubule viability or proliferation. Moreover, overexpression or lack of A1AR failed to impact the iohexol toxicity on proximal tubule cells. Therefore, we conclude that radiocontrast causes acute renal failure via mechanisms dependent on A1AR; however, renal proximal tubule A1AR do not contribute to the direct tubular toxicity of radiocontrast.

2012 ◽  
Vol 303 (2) ◽  
pp. F266-F278 ◽  
Author(s):  
Šárka Lhoták ◽  
Sudesh Sood ◽  
Elise Brimble ◽  
Rachel E. Carlisle ◽  
Stephen M. Colgan ◽  
...  

Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca2+-independent phospholipase A2 (iPLA2β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.


1993 ◽  
Vol 43 (3) ◽  
pp. 575-584 ◽  
Author(s):  
H. David Humes ◽  
Takamichi Nakamura ◽  
Deborah A. Cieslinski ◽  
Diane Miller ◽  
Robert V. Emmons ◽  
...  

1995 ◽  
Vol 268 (4) ◽  
pp. C1053-C1061 ◽  
Author(s):  
G. Nowak ◽  
R. G. Schnellmann

Unlike renal proximal tubule cells (RPTC) in vivo, RPTC cultured in standard conditions are hypoxic, glycolytic, and not gluconeogenic. This study investigated the effects of glucose and lactate on glycolysis and gluconeogenesis in rabbit RPTC cultured in conditions of increased oxygen supply (Shake). Confluent Shake cultures grown in the presence of glucose exhibited increased oxygen consumption and decreased glycolysis compared with stationary (Still) cultures. Addition of 5 mM lactate to a 5 mM glucose medium decreased net glucose consumption and glucose oxidation in Shake cultures by 34 and 50%, respectively, and resulted in net lactate consumption. Addition of 5 mM lactate to a glucose-free medium resulted in a threefold increase in net glucose production (0.024 +/- 0.003 vs. 0.074 +/- 0.013 mumol.mg protein-1.day-1) in Shake cultures. Net glucose production further increased to 0.430 +/- 0.020 and 1.640 +/- 0.040 mumol.mg protein-1.day-1 when glucose reuptake was inhibited by 1 mM phloridzin or 1 mM phloridzin + 1 mM phloretin, respectively. These results show that, under conditions of improved oxygenation and in the presence of lactate and physiological levels of glucose and insulin, RPTC aerobic metabolism increases and glucose metabolism changes from glycolysis and net lactate production to gluconeogenesis and net lactate consumption.


1994 ◽  
Vol 127 (2) ◽  
pp. 425-440 ◽  
Author(s):  
T Hasson ◽  
M S Mooseker

We have cloned a new mammalian unconventional myosin, porcine myosin-VI from the proximal tubule cell line, LLC-PK1 (CL4). Porcine myosin-VI is highly homologous to Drosophila 95F myosin heavy chain, and together these two myosins comprise a sixth class of myosin motors. Myosin-VI exhibits ATP-sensitive actin-binding activities characteristic of myosins, and it is associated with a calmodulin light chain. Within LLC-PK1 cells, myosin-VI is soluble and does not associate with the major actin-containing domains. Within the kidney, however, myosin-VI is associated with sedimentable structures and specifically locates to the actin- and membrane-rich apical brush border domain of the proximal tubule cells. This motor was not enriched within the glomerulus, capillaries, or distal tubules. Myosin-VI associates with the proximal tubule cytoskeleton in an ATP-sensitive fashion, suggesting that this motor is associated with the actin cytoskeleton within the proximal tubule cells. Given the difference in association of myosin-VI with the apical cytoskeleton between LLC-PK1 cells and adult kidney, it is likely that this cell line does not fully differentiate to form functional proximal tubule cells. Myosin-VI may require the presence of additional elements, only found in vivo in proximal tubule cells, to properly locate to the apical domain.


2015 ◽  
Vol 4 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Katarzyna M. Bloch ◽  
Noreen Yaqoob ◽  
Sikander Sharma ◽  
Andrew Evans ◽  
Lydia Aschauer ◽  
...  

Monuron (1,1-dimethyl-3-(4-chlorophenyl)urea) is a widely used herbicide in developing countries although concerns have been raised about its toxicity and carcinogenicity.


Redox Biology ◽  
2014 ◽  
Vol 2 ◽  
pp. 570-579 ◽  
Author(s):  
Peiying Yu ◽  
Weixing Han ◽  
Van Anthony M. Villar ◽  
Yu Yang ◽  
Quansheng Lu ◽  
...  

2010 ◽  
Vol 299 (6) ◽  
pp. C1324-C1334 ◽  
Author(s):  
Evgenia Dobrinskikh ◽  
Hector Giral ◽  
Yupanqui A. Caldas ◽  
Moshe Levi ◽  
R. Brian Doctor

Serum phosphate levels are acutely impacted by the abundance of sodium-phosphate cotransporter IIa (NaPiIIa) in the apical membrane of renal proximal tubule cells. PSD-95/Disks Large/Zonula Occludens (PDZ) domain-containing proteins bind NaPiIIa and likely contribute to the delivery, retention, recovery, and trafficking of NaPiIIa. Shank2 is a distinctive PDZ domain protein that binds NaPiIIa. Its role in regulating NaPiIIa activity, distribution, and abundance is unknown. In the present in vivo study, rats were maintained on a low-phosphate diet, and then plasma phosphate levels were acutely elevated by high-phosphate feeding to induce the recovery, endocytosis, and degradation of NaPiIIa. Western blot analysis of renal cortical tissue from rats given high-phosphate feed showed NaPiIIa and Shank2 underwent degradation. Quantitative immunofluorescence analyses, including microvillar versus intracellular intensity ratios and intensity correlation quotients, showed that Shank2 redistributed with NaPiIIa during the time course of NaPiIIa endocytosis. Furthermore, NaPiIIa and Shank2 trafficked through distinct endosomal compartments (clathrin, early endosomes, lysosomes) with the same temporal pattern. These in vivo findings indicate that Shank2 is positioned to coordinate the regulated endocytic retrieval and downregulation of NaPiIIa in rat renal proximal tubule cells.


Sign in / Sign up

Export Citation Format

Share Document