Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury

2008 ◽  
Vol 295 (2) ◽  
pp. F397-F405 ◽  
Author(s):  
Ewen M. Harrison ◽  
Eva Sharpe ◽  
Christopher O. Bellamy ◽  
Stephen J. McNally ◽  
Luke Devey ◽  
...  

Heat shock proteins (Hsps) are protective in models of transplantation, yet practical strategies to upregulate them remain elusive. The heat shock protein 90-binding agent (HBA) geldanamycin and its analogs (17-AAG and 17-DMAG) are known to upregulate Hsps and confer cellular protection but have not been investigated in a model relevant to transplantation. We examined the ability of HBAs to upregulate Hsp expression and confer protection in renal adenocarcinoma (ACHN) cells in vitro and in a mouse model of kidney ischemia-reperfusion (I/R) injury. Hsp70 gene expression was increased 30-40 times in ACHN cells treated with HBAs, and trimerization and DNA binding of heat shock transcription factor-1 (HSF1) were demonstrated. A three- and twofold increase in Hsp70 and Hsp27 protein expression, respectively, was found in ACHN cells treated with HBAs. HBAs protected ACHN cells from an H2O2-mediated oxidative stress, and HSF1 short interfering RNA was found to abrogate HBA-mediated Hsp induction and protection. In vivo, Hsp70 was upregulated in the kidneys, liver, lungs, and heart of HBA-treated mice. This was associated with a functional and morphological renal protection from I/R injury. Therefore, HBAs mediate upregulation of protective Hsps in mouse kidneys which are associated with reduced I/R injury and may be useful in reducing transplant-associated kidney injury.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Hao Chen ◽  
Jialiang Wang ◽  
Hengli Tian

Abstract INTRODUCTION It has been increasingly recognized that glioblastoma multiforme (GBM) is a highly heterogeneous disease, which is initiated and sustained by molecular alterations in an array of signal transduction pathways. Heat-shock protein 90 (Hsp90) is a molecular chaperone to be critically implicated in folding and activation of a diverse group of client proteins, many of which are key regulators of important glioblastoma biology. METHODS To determine the therapeutic potential of targeting Hsp90 in glioblastoma, we assessed the anti-neoplastic efficacy of NXD30001, a brain-penetrating Hsp90 inhibitor as a monotherapy or in combination with radiation, both in Vitro and in Vivo. RESULTS Our results demonstrated that NXD30001 potently inhibited neurosphere formation, growth and survival of CD133 + glioblastoma stem cells (GSCs) with the half maximal inhibitory concentrations (IC50) at low nanomolar concentrations. At suboptimal concentrations, inhibition of Hsp90 did not exert cytotoxic activity but rather increased radiosensitivity in GSCs. CD133- GBM cells were less sensitive and not radiosensitized by NXD30001. In lines with its cytotoxic and radiosensitizing effects, NXD30001 dose-dependently decreased phosphorylation protein levels of multiple Hsp90 client proteins, including those playing key roles in GSCs, such as EGFR, Akt, c-Myc, and Notch1. In addition, combining NXD30001 with radiation could impair DNA damage response and ER stress response to induce apoptosis of GSCs. Treatment of orthotopic glioblastoma tumors with NXD30001 extended median survival of tumor-bearing mice by approximately 20% (treated 37 days vs vehicle 31 d, P = .0026). Radiation alone increased median survival of tumor-bearing mice from 31 to 38 d, combination with NXD30001 further extended survival to 43 d (P = .0089). CONCLUSION Our results suggest that GBM stem cells (CD133+) are more sensitive to NXD30001 than non-stem GBM cells (CD133-). Furthermore, combination NXD30001 with radiation significantly inhibits GBM progression than use it as a monotherapy by targeting GSCs.


2022 ◽  
Author(s):  
Tuo Liu ◽  
Fang Yang ◽  
Xiangyi Lu ◽  
Chang Liu ◽  
Yang Yu ◽  
...  

Abstract The lack of effective therapy mandates development of treatment for cerebral ischemia-reperfusion injury (CIRI. The previous study suggested that Cyclovirobuxine D (CVBD) encapsulated in Angiopep-conjugated Polysorbate 80-Coated Liposomes showed a better brain targeting by intranasal administration. Therefore, this study focused on the protection and mechanism of CVBD brain-targeted liposomes in treating CIRI. In order to evaluate these, the CIRI rat model was induced by middle cerebral artery occlusion (MCAO)-reperfusion. Pharmacological evaluation was assessed in vivo by general indexs, neurobehavioral scores, triphenyl tetrazolium chloride (TTC) staining, histopathological staining (HE staining and Nissl staining), small animal magnetic resonance imaging, biochemical assay and Western blot. The results show that CVBD liposomes alleviated pathological damage of brain. Futhermore, the protective effect of CVBD liposomes on OGD/R-injured HT22 cell was investigated by cell fusion degree, cell proliferation curve and cell viability. OGD/R-injured HT22 cell was infected by mRFP-GFP-LC3 adenovirus. The autophagosome and autophagy flow were observed by laser confocal microscopy, and autophagy-related protein expressions (LC3, p62 and Beclin 1) were analyzed by Western blot. Meanwhile, the classic autophagy inhibitor, chloroquine, was used to explore the autophagy-regulated mechanism of CVBD brain-targeted liposomes in treating CIRI. In cell model of oxygen and glucose deprivation/re-oxygenation, CVBD liposomes increased cell viability and decreased ROS level. CVBD liposomes improved oxidative stress protein expressions and activated autophagy in vitro. Furthermore, CVBD liposomes reversed the decrease of cell viability, increase of ROS level, and reduction of protein expressions associated to anti-oxidative stress and autophagy induced by chloroquine. Collectively, CVBD liposomes inhibited CIRI via regulating oxidative stress and enhancing autophagy level in vivo and in vitro, showing a great potential in treating CIRI in clinic.


Sign in / Sign up

Export Citation Format

Share Document