Is urea formation regulated primarily by acid-base balance in vivo?

1986 ◽  
Vol 250 (4) ◽  
pp. F605-F612 ◽  
Author(s):  
M. L. Halperin ◽  
C. B. Chen ◽  
S. Cheema-Dhadli ◽  
M. L. West ◽  
R. L. Jungas

Large quantities of ammonium and bicarbonate are produced each day from the metabolism of dietary protein. It has recently been proposed that urea synthesis is regulated by the need to remove this large load of bicarbonate. The purpose of these experiments was to test whether the primary function of ureagenesis in vivo is to remove ammonium or bicarbonate. The first series of rats were given a constant acid load as hydrochloric acid or ammonium chloride; individual rats received a constant nitrogen load at a time when their plasma acid-base status ranged from normal (pH 7.4, 28 mM HCO3) to severe metabolic acidosis (pH 6.9, 6 mM HCO3). Urea plus ammonium excretions and the blood urea, glutamine, and ammonium concentrations were monitored with time. Within the constraints of non-steady-state conditions, the rate of urea synthesis was constant and the plasma glutamine and ammonium concentrations also remained constant; thus it appears that the rate of urea synthesis was not primarily regulated by the acid-base status of the animal in vivo over a wide range of plasma ammonium concentrations. In quantitative terms, the vast bulk of the ammonium load was converted to urea over 80 min; only a small quantity of ammonium appeared as circulating glutamine or urinary ammonium. Urea synthesis was proportional to the nitrogen load. A second series of rats received sodium bicarbonate; urea synthesis was not augmented by a bicarbonate load. We conclude from these studies that the need to dispose of excess bicarbonate does not primarily determine the rate of ureagenesis in vivo. The data support the classical view that ureagenesis is controlled by the quantity of ammonium to be removed.

1987 ◽  
Vol 252 (2) ◽  
pp. F221-F225 ◽  
Author(s):  
S. Cheema-Dhadli ◽  
R. L. Jungas ◽  
M. L. Halperin

The purpose of this study was to clarify how changes in acid-base balance influence the rate of urea synthesis in vivo. Since ureagenesis was increased by an ammonium infusion into rats, regulation seemed to be a function of the blood ammonium concentration. The rate of urea synthesis was constant at a fixed rate of ammonium infusion and independent of the conjugate base infused, chloride or bicarbonate. The steady-state blood ammonium concentration was higher in the rats that developed metabolic acidosis. Thus it appeared that regulation was not directly mediated by this ammonium concentration per se. The rate of urea synthesis was also independent of the blood pH. Accordingly, the rate of urea synthesis was examined as a function of the plasma NH3 concentration. The rate of ureagenesis was found to be directly proportional to the plasma NH3 concentration. Assuming that plasma NH3 levels reflect those in mitochondria, the NH3 concentration yielding half-maximal rates of urea synthesis (close to 2 microM) was in the same range as Km for the rate-limiting step in ureagenesis, carbamoyl phosphate synthetase (EC 6.3.4.16). These results suggest that, at a constant ammonium concentration, the decreased rate of ureagenesis caused by a pH fall in vitro could reflect an acidosis-induced decline in the concentration of true substrate (NH3) for this pathway.


PEDIATRICS ◽  
1970 ◽  
Vol 46 (5) ◽  
pp. 730-736
Author(s):  
Katherine H. Halloran ◽  
Steven C. Schimpff ◽  
Jean G. Nicolas ◽  
Norman S. Talner

Tolerance to acetyl strophanthidin, a rapid-acting cardiac aglycone, was determined in 28 anesthetized mongrel puppies, ages 16 to 56 days, and compared to tolerance in 16 littermate puppies in whom acute hypercapnic acidemia was produced. The tolerance was also compared to that of four adult mongrel dogs. The toxic dose was defined as the intravenous amount required to produce four consecutive premature ventricular contractions. A marked variation in the toxic dose was found in the 28 control puppies (range 83 to 353 µg/kg, mean 169 µg/kg) which could not be correlated with age, arterial blood gases or pH, serum potassium or sodium, arterial pressure, or heart rate. The toxic dose was significantly greater in the puppies than in the adult dogs, in whom the mean toxic dose was 64 µg/kg (range 50 to 89 µg/kg). A significant increase in tolerance was also observed in the puppies with hypercapnic acidemia (mean toxic dose 220 µg/kg, range 93 to 375 µg/kg) in comparison to tolerance in the control puppies and despite the wide range of tolerance, each of the puppies with hypercapnic acidemia showed greater tolerance than its littermate control puppy. Assessment of the clinical implications of these findings will require study of the effects of alterations in acid-base balance on the inotropic effect of acetyl strophanthidin in addition to the toxic electrophysiologic effects.


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


1989 ◽  
Vol 257 (4) ◽  
pp. F696-F699
Author(s):  
T. Almdal ◽  
H. Vilstrup ◽  
K. Bjerrum ◽  
L. O. Kristensen

It has been suggested that urea synthesis participates directly in body pH homeostasis by removal of bicarbonate. To elucidate this hypothesis sodium bicarbonate or sodium chloride was infused (11.5 mumol/min) for 90 min into control rats and into rats that had undergone an 85% hepatectomy immediately before starting the infusion. Urea synthesis rate was 2.6 +/- 0.3 mumol/min (mean +/- SE) in controls, and was significantly (P less than 0.01) reduced to 1.0 +/- 0.2 mumol/min in partially hepatectomized rats. At the start of bicarbonate infusion, pH was 7.38 and 7.34 in control and partially hepatectomized rats, respectively, and at the end of infusion, pH was 7.56 and 7.51. Standard bicarbonate at start of bicarbonate infusion was 21.9 and 21.3 mM in controls and partially hepatectomized, respectively, and it increased to 32.7 and 29.9 mM at end of infusion. In saline-infused rats a slight decrease of approximately 0.05 pH units was observed during the experiment, but again no difference emerged between control and partially hepatectomized rats. It is concluded that a major role of the liver in the regulation of acid-base balance is unlikely.


2007 ◽  
Vol 292 (3) ◽  
pp. G899-G904 ◽  
Author(s):  
Markus Sjöblom ◽  
Olof Nylander

When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE2-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. Mean arterial blood pressure (MAP), arterial acid-base balance, and duodenal mucosal bicarbonate secretion (DMBS) were studied. Two intra-arterial fluid support strategies were used: a standard Ringer solution and an isotonic Na2CO3 solution. Duodenal single perfusion was used, and DMBS was assessed by back titration of the effluent. PGE2 was used to stimulate DMBS. In Ringer solution-infused mice, isoflurane-induced acidosis became worse with time. The blood pH was 7.15–7.21 and the base excess was about −8 mM at the end of experiments. The continuous infusion of Na2CO3 solution completely compensated for the acidosis. The blood pH was 7.36–7.37 and base excess was about 1 mM at the end of the experiment. Basal and PGE2-stimulated DMBS were markedly greater in animals treated with Na2CO3 solution than in those treated with Ringer solution. MAP was slightly higher after Na2CO3 solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE2-stimulated DMBS as well as the responsiveness to PGE2, effects prevented by a continuous infusion of Na2CO3. When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na2CO3 infusion to maintain a normal acid-base balance.


1979 ◽  
Vol 184 (3) ◽  
pp. 599-606 ◽  
Author(s):  
G Baverel ◽  
P Lund

1. The concentration of HCO3- (independent of any change of pH) exerts different effects on glutamine metabolism in rat kidney-cortex tubules, hepatocytes and enterocytes.2. In kidney tubules HCO3- (10.5-50 MM) has no effect on glutaminase (EC 3.5.1.2), whereas glutamate dehydrogenase (EC 1.4.1.3) is inhibited as HCO3- concentration is increased. The result is that flux through the entire glutamate-to-glucose pathway is inhibited by increasing HCO3- concentrations. A large proportion (more than 30%) of the glutamine removed undergoes complete oxidation. 3. In hepatocytes, and to a smaller extent in enterocytes, HCO3- is an accelerator of glutaminase. Synthesis of glucose and urea from glutamine in hepatocytes increases as HCO3- concentration is increased. Calculations show that fumarate, formed via aspartate aminotransferase and arginino-succinate lyase, is the precursor of the glucose. There is no complete oxidation of the carbon skeleton of glutamine in hepatocytes. 4. Leucine at near-physiological concentrations (0.1-1 mM) is an accelerator of glutaminase in hepatocytes, but not in kidney tubules or in enterocytes. 5. The results are discussed in relation to regulation of acid/base balance in vivo.


1994 ◽  
Vol 5 (5) ◽  
pp. S59
Author(s):  
F L Coe ◽  
J H Parks

The original contributions of Jacob Lemann to mineral metabolism, especially calcium metabolism and idopathic hypercalciuria, are reviewed. One group of studies concern acid base balance and calcium loss, showing that acid loads increase calcium loss in the urine. Another group of studies concern the calciuria of glucose or carbohydrate ingestion, with the observation that stone patients, who as a population are enriched with hypercalciuria, respond with more exaggerated calciuria to glucose loads than do normal people. Yet another body of work shows that normal men, when given noncalcemic loads of calcitriol, exhibit two essential features of idiopathic hypercalciuria--hyperabsorptive hypercalciuria and bone mineral loss on a low-calcium diet. The final group of studies presented worked on the problem of thiazide hypocalciuric action, and where the calcium goes that does not appear in the urine, as well as the effects of potassium bicarbonate and sodium loads on mineral balance and acid base status.


1961 ◽  
Vol 11 (2) ◽  
pp. 109-125
Author(s):  
Hisato YOSHIMURA ◽  
Mamoru FUJIMOTO ◽  
Osamu OKUMURA ◽  
Jyunichi SUGIMOTO ◽  
Tsutomu KUWADA

Sign in / Sign up

Export Citation Format

Share Document