scholarly journals Management of the acid-base balance by the red blood cell carbonic anhydrase (RCA). I. Correlation of the RCA activity and acid-base balance in the in vitro and in vivo experiments.

1983 ◽  
Vol 139 (4) ◽  
pp. 339-348 ◽  
Author(s):  
KENJI TAKI ◽  
MIEKO TAKAMURA ◽  
HARUYUKI SOTANI ◽  
REIJI WAKUSAWA
1987 ◽  
Vol 151 (2) ◽  
pp. 145-154
Author(s):  
KENJI TAKI ◽  
NOBUAKI TAKAHASHI ◽  
KEISHI MIZUNO ◽  
REIJI WAKUSAWA

1987 ◽  
Vol 252 (2) ◽  
pp. F221-F225 ◽  
Author(s):  
S. Cheema-Dhadli ◽  
R. L. Jungas ◽  
M. L. Halperin

The purpose of this study was to clarify how changes in acid-base balance influence the rate of urea synthesis in vivo. Since ureagenesis was increased by an ammonium infusion into rats, regulation seemed to be a function of the blood ammonium concentration. The rate of urea synthesis was constant at a fixed rate of ammonium infusion and independent of the conjugate base infused, chloride or bicarbonate. The steady-state blood ammonium concentration was higher in the rats that developed metabolic acidosis. Thus it appeared that regulation was not directly mediated by this ammonium concentration per se. The rate of urea synthesis was also independent of the blood pH. Accordingly, the rate of urea synthesis was examined as a function of the plasma NH3 concentration. The rate of ureagenesis was found to be directly proportional to the plasma NH3 concentration. Assuming that plasma NH3 levels reflect those in mitochondria, the NH3 concentration yielding half-maximal rates of urea synthesis (close to 2 microM) was in the same range as Km for the rate-limiting step in ureagenesis, carbamoyl phosphate synthetase (EC 6.3.4.16). These results suggest that, at a constant ammonium concentration, the decreased rate of ureagenesis caused by a pH fall in vitro could reflect an acidosis-induced decline in the concentration of true substrate (NH3) for this pathway.


2007 ◽  
Vol 292 (3) ◽  
pp. G899-G904 ◽  
Author(s):  
Markus Sjöblom ◽  
Olof Nylander

When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE2-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. Mean arterial blood pressure (MAP), arterial acid-base balance, and duodenal mucosal bicarbonate secretion (DMBS) were studied. Two intra-arterial fluid support strategies were used: a standard Ringer solution and an isotonic Na2CO3 solution. Duodenal single perfusion was used, and DMBS was assessed by back titration of the effluent. PGE2 was used to stimulate DMBS. In Ringer solution-infused mice, isoflurane-induced acidosis became worse with time. The blood pH was 7.15–7.21 and the base excess was about −8 mM at the end of experiments. The continuous infusion of Na2CO3 solution completely compensated for the acidosis. The blood pH was 7.36–7.37 and base excess was about 1 mM at the end of the experiment. Basal and PGE2-stimulated DMBS were markedly greater in animals treated with Na2CO3 solution than in those treated with Ringer solution. MAP was slightly higher after Na2CO3 solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE2-stimulated DMBS as well as the responsiveness to PGE2, effects prevented by a continuous infusion of Na2CO3. When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na2CO3 infusion to maintain a normal acid-base balance.


1985 ◽  
Vol 249 (2) ◽  
pp. R246-R254 ◽  
Author(s):  
S. F. Perry ◽  
C. E. Booth ◽  
D. G. McDonald

Branchial gas transfer, acid-base balance, and hemodynamics were critically evaluated and compared in Ringer-perfused and blood-perfused heads of rainbow trout. Blood perfusion stimulated O2 uptake and CO2 excretion across the gills to values more representative of intact fish. The stimulatory effect of blood on gas transfer was due to increased O2 carrying capacity (O2 uptake) and the presence of erythrocytic carbonic anhydrase (CO2 excretion). Adding carbonic anhydrase to Ringer enhanced CO2 excretion in a manner similar to blood. During Ringer perfusion, arteriovenous pH gradients were abnormal (arterial pH less than venous pH). Perfusion with blood or addition of carbonic anhydrase to Ringer reversed the pH gradients to typical in vivo levels. Branchial vascular resistance to flow was abnormally high in both Ringer- and blood-perfused preparations, primarily as a result of low dorsal aortic pressure. Input pressure increased during blood perfusion and was similar to ventral aortic pressure in vivo. Perfusion with Ringer may have caused irreversible deterioration of gill function as indicated by decreased arterial Po2 and O2 extraction effectiveness after a rapid switch from Ringer to blood perfusion. The results are discussed with reference to the suitability of perfused trout head preparations for studying gill gas transfer, acid-base balance, and hemodynamics. Comparisons are made between the perfused head preparation and intact fish as well as with other types of perfused gill preparations.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136885 ◽  
Author(s):  
Stéphane Kerbrat ◽  
Benoit Vingert ◽  
Marie-Pierre Junier ◽  
Flavia Castellano ◽  
François Renault-Mihara ◽  
...  

1987 ◽  
Author(s):  
M T Santos ◽  
J Aznar ◽  
J Valles ◽  
J L Perez-Reguejo

RBC stimulate the initial stages of platelet activation by collagen as evaluated by the BASIC wave (Perez-Requejo et al. Thromb Haemostas 54:799 1985). In order to get some insight into the mechanisms of platelet-RBC interactions, a BASIC wave was induced by lug/ml of collagen after mixing "in vitro" platelets and RBC obtained both before and two hours after a single dose of 500 mg of ASA from normal subjects. The TXB2 formed was also evaluated. The results show (Table) that non aspirinized RBC (non-ASA-RBC) increase the BASIC wave intensity of aspirinized platelets (ASA-PRP) by a cyclooxygenase-independent pathway since no increase in TXB2 was observed (Exp 1), while both non-ASA-RBC (Exp 2) and ASA-RBC (Exp 3) activate non-ASA platelets with theparticipation of the cyclooxygenase system, since an increase in TXA2 was found.A comparison of the effect of non-ASA-RBC (Exp 1) and ASA-RBC (Exp 4) on aspirinized platelets shows that ASA modifies the RBC behaviour associated with estimulation of platelets by a cyclooxygenase-independent pathway. This effect of ASA on RBC is nottransient and lasts at least 48 hours after ASA ingestion. In addition, when asmall proportion of nonASA platelets (10%) is mixed with aspirinized platelets(90%) and ASA-RBC - a situation that can be encountered "in vivo" inthe hours following ASA ingestion - the intensity of the BASIC wave is 89% of that obtained when all the platelets are non aspirinized. This RBC effect on the mixtureof ASA and nonASA platelets, may help explain the sometimes contradictory effect of ASA as an antithrombotic agent.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1915-1925 ◽  
Author(s):  
Reuben Kapur ◽  
Ryan Cooper ◽  
Xingli Xiao ◽  
Mitchell J. Weiss ◽  
Peter Donovan ◽  
...  

Abstract Stem cell factor (SCF) is expressed as an integral membrane growth factor that may be differentially processed to produce predominantly soluble (S) (SCF248) or membrane-associated (MA) (SCF220) protein. A critical role for membrane presentation of SCF in the hematopoietic microenvironment (HM) has been suggested from the phenotype of the Steel-dickie(Sld) mice, which lack MA SCF, and by studies performed in our laboratory (and by others) using long-term bone marrow cultures and transgenic mice expressing different SCF isoforms.Steel17H (Sl17H) is an SCF mutant that demonstrates melanocyte defects and sterility in males but not in females. The Sl17H allele contains a intronic mutation resulting in the substitution of 36 amino acids (aa’s) in the SCF cytoplasmic domain with 28 novel aa’s. This mutation, which affects virtually the entire cytoplasmic domain of SCF, could be expected to alter membrane SCF presentation. To investigate this possibility, we examined the biochemical and biologic properties of the Sl17H-encoded protein and its impact in vivo and in vitro on hematopoiesis and on c-Kit signaling. We demonstrate that compound heterozygous Sl/Sl17H mice manifest multiple hematopoietic abnormalities in vivo, including red blood cell deficiency, bone marrow hypoplasia, and defective thymopoiesis. In vitro, both S and MA Sl17H isoforms of SCF exhibit reduced cell surface expression on stromal cells and diminished biological activity in comparison to wild-type (wt) SCF isoforms. These alterations in presentation and biological activity are associated with a significant reduction in the proliferation of an SCF-responsive erythroid progenitor cell line and in the activation of phosphatidylinositol 3-Kinase/Akt and mitogen-activated protein-Kinase signaling pathways. In vivo, transgene expression of the membrane-restricted (MR) (SCFX9/D3) SCF in Sl/Sl17H mutants results in a significant improvement in peripheral red blood cell counts in comparison toSl/Sl17H mice.


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


Sign in / Sign up

Export Citation Format

Share Document