Ammonia entry along rat proximal tubule in vivo: effects of luminal pH and flow rate

1987 ◽  
Vol 253 (4) ◽  
pp. F760-F766 ◽  
Author(s):  
E. E. Simon ◽  
L. L. Hamm

The roles of luminal pH and flow rate in determining ammonia entry along the rat proximal tubule were examined using in vivo microperfusion. With perfusion rate constant at 15 nl/min, perfusate bicarbonate concentration was varied. Collected fluid ammonia concentration correlated with collected fluid bicarbonate concentration, consistent with nonionic diffusion (r = 0.726; P less than 0.001). Hence ammonia entry was dependent on luminal pH. With perfusate bicarbonate constant at 5 or 25 mM, perfusion rate was varied. In all groups, there was little change in collected fluid ammonia concentration with flow rate. Thus ammonia entry was also highly dependent on flow rate. With paired collections using a 25 mM bicarbonate perfusate, collected fluid bicarbonate was higher at a 30 nl/min perfusion rate than at 15 nl/min (16.8+/- 1.1 vs. 10.3+/- 1.1 mM), whereas total ammonia concentrations were similar (0.54+/- 0.1 and 0.55+/- 0.1). Thus the NH3 concentration was higher at 30 than at 15 nl/min (6.1+/- 1.2 vs. 3.4+/- 0.5 microM; P less than 0.025), a result not predicted by simple nonionic diffusion. Thus these studies demonstrate the importance of nonionic diffusion in determining ammonia entry along the proximal tubule. However, the results also demonstrate that flow rate importantly determines ammonia entry in vivo in a manner not predicted by simple nonionic diffusion of NH3. This augmentation of ammonia entry with increasing flow rate may involve flow-dependent alterations in ammonia synthesis or transport of NH+4.

1988 ◽  
Vol 255 (5) ◽  
pp. F861-F867
Author(s):  
E. E. Simon ◽  
B. Fry ◽  
K. Hering-Smith ◽  
L. L. Hamm

The roles of luminal pH and flow rate in determining ammonia loss from proximal tubules perfused with solutions containing 10 mM NH4Cl were examined using in vivo microperfusion. Perfusate bicarbonate concentration was varied between 5, 25, and 40 mM in tubules perfused at 50 nl/min. As expected, ammonia loss from the 25 or 40 mM bicarbonate-containing perfusates was greater than from that containing 5 mM bicarbonate. Furthermore, there was a correlation between ammonia loss and the log mean luminal bicarbonate concentration (r = 0.39, P less than 0.01). From the collected fluid ammonia and bicarbonate concentrations, the transtubular gradients for NH+4 and NH3 were estimated, allowing a calculation of the apparent permeability coefficients for NH3 (PNH3) and NH+4 (PNH+4). The calculated PNH3 of 2.2 +/- 0.5 X 10(-2) cm/s was similar to previous estimates in the rabbit; the calculated PNH+4 of 5.5 +/- 0.8 X 10(-4) cm/s was approximately 10 times that previously found in the rabbit proximal straight tubule in vitro. Next, flow rate was varied between 25 and 50 nl/min using the 5 mM bicarbonate perfusate. Ammonia loss was significantly higher from the latter. Thus these studies suggest that NH+4 loss from the proximal tubule may be an important determinant of ammonia movement along this segment. Ammonia loss is flow-rate dependent, similar to ammonia entry in previous studies.


1989 ◽  
Vol 256 (6) ◽  
pp. F1104-F1110 ◽  
Author(s):  
E. E. Simon ◽  
C. Merli ◽  
J. Herndon ◽  
E. J. Cragoe ◽  
L. L. Hamm

The technique of in vivo microperfusion was used to examine the determinants of ammonia entry along the rat proximal tubule under conditions of chronic metabolic acidosis (CMA). When perfused with a 5 mM bicarbonate-containing perfusate, collected fluid ammonia concentrations remained constant with increasing flow rate and thus ammonia entry was highly flow-rate dependent. Ammonia entry was also flow-rate dependent using a 25 mM bicarbonate perfusate but entry reached a plateau as perfusion rate increased. Also, ammonia entry tended to be lower at all perfusion rates with the 25 mM perfusate compared with the 5 mM bicarbonate perfusate, but this was most evident at the highest perfusion rate (45 nl/min). The decline in ammonia entry was associated with increasing collected fluid bicarbonate concentrations, suggesting that there was inhibition of diffusion trapping of ammonia. The effects of Na+-H+ exchange inhibition on ammonia entry were examined using the amiloride analogue, 5-(N-ethyl-N-isopropyl)amiloride. With a 25 mM bicarbonate-containing perfusate, the amiloride analogue caused a significant decrease in bicarbonate reabsorption but a nonsignificant decrease in ammonia entry associated with a significant rise in collected fluid bicarbonate concentration. When the potential effects of decreased diffusion trapping of ammonia were eliminated with 12 and 5 mM bicarbonate-containing perfusates, the analogue had no effect on ammonia entry despite significant inhibition of bicarbonate reabsorption. Thus ammonia entry in CMA is moderately affected by tubule fluid pH but is highly flow-rate dependent. There were no effects of inhibition of Na+-H+ exchange above those expected from inhibition of diffusion trapping of ammonia.


1994 ◽  
Vol 267 (2) ◽  
pp. F237-F248 ◽  
Author(s):  
A. M. Weinstein

Pathways for ammonia transport have been incorporated within a model of rat proximal tubule [A. M. Weinstein. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F784-F798, 1992]. The luminal membrane includes a Na+/NH4+ exchanger, while at the peritubular membrane there is uptake of NH4+ on the Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase); both luminal and peritubular cell membranes contain conductive pathways for NH4+. The model equations have been expanded to include cellular ammoniagenesis. The principal focus of this study is the interplay of forces that can raise proximal tubule fluid total ammonia concentration 10-fold higher than in arterial plasma. Analysis of a cellular model reveals that luminal membrane Na+/NH4+ exchange, cellular production of ammonia, and peritubular membrane NH4+ uptake (via Na(+)-K(+)-ATPase or via K+ channel) all act in parallel to drive ammonia secretion. This derives from the cellular interconversion of NH4+ and NH3 and the free permeation of NH3 across cell membranes. It implies that inhibition of the luminal membrane transporter does not block the contribution of peritubular uptake to the overall active transport of ammonia. Conversely, when inhibition of the luminal membrane Na+/NH4+ entry (i.e., Na+/H+ inhibition) depresses transcellular Na+ flux, then the decrease of NH4+ flux through the peritubular Na+ pump enhances the apparent importance of the luminal membrane pathway. This analysis is confirmed in the numerical calculations and is a departure from the Ussing paradigm of series membrane Na+ transport. Although active secretion of ammonia by this tubule is substantial, the relative contribution of luminal Na+/NH4+ exchange and of peritubular uptake via the Na+ pump remains uncertain. The determination of peritubular capillary NH4+ concentration will be crucial to resolving this uncertainty, with lower concentration (i.e., closer to systemic arterial ammonia) obligating greater luminal membrane Na+/NH4+ exchange.


1992 ◽  
Vol 262 (1) ◽  
pp. F47-F54 ◽  
Author(s):  
P. A. Preisig

In vivo microperfusion was used to examine the mechanism of luminal flow rate dependence of proximal tubule acidification. Luminal flow rate was acutely changed between 5 and 40 nl/min, while luminal and peritubular capillary composition were held constant. With inhibition of basolateral membrane base transport by peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), cell pH (pHi) provides a sensitive index of apical membrane H secretory activity. At a luminal perfusate [HCO3] of 25 mM, progressive increases in luminal flow rate (5----15----25----40 nl/min) caused progressive increases in pHi. This effect was of a smaller magnitude with a luminal perfusate [HCO3] of 60 mM and was further decreased at a luminal perfusate [HCO3] of 100 mM. This pattern of diminished flow rate dependence at higher luminal [HCO3] is consistent with the presence of a luminal unstirred layer, whose composition can be modified by luminal flow rate. The activity of the apical membrane Na-H antiporter, assayed as the initial rate of pHi recovery from an acid load in the presence of peritubular DIDS, was faster at 40 compared with 5 nl/min. Basolateral membrane Na-3HCO3 symporter activity, assayed as the initial rate of pHi recovery from an alkali load in the absence of luminal and peritubular chloride, was faster at 40 compared with 5 nl/min. This effect was eliminated by luminal amiloride, suggesting an indirect effect of flow mediated by changes in pHi secondary to flow rate-dependent changes in apical membrane Na-H antiporter activity. In summary, increases in luminal flow rate directly increase apical membrane H secretion, possibly by modification of a luminal unstirred layer.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 249 (6) ◽  
pp. F789-F798 ◽  
Author(s):  
A. M. Kahn ◽  
E. J. Weinman

The transport of urate in the mammalian nephron is largely confined to the proximal tubule. Depending on the species, net reabsorption or net secretion is observed. The rat, like the human and the mongrel dog, demonstrates net reabsorption of urate and has been the most extensively studied species. The unidirectional reabsorption and secretion of urate in the rat proximal tubule occur via a passive and presumably paracellular route and by a mediated transcellular route. The reabsorption of urate, and possibly its secretion, can occur against an electrochemical gradient. A variety of drugs and other compounds affect the reabsorption and secretion of urate. The effects of these agents depend on their site of application (luminal or blood), concentration, and occasionally their participation in transport processes that do not have affinity for urate. Recent studies with renal brush border and basolateral membrane vesicles from the rat and brush border vesicles from the dog have determined the mechanisms for urate transport across the luminal and antiluminal membranes of the proximal tubule cell. Brush border membrane vesicles contain an anion exchanger with affinity for urate, hydroxyl ion, bicarbonate, chloride, lactate, p-aminohippurate (PAH), and a variety of other organic anions. Basolateral membrane vesicles contain an anion exchanger with affinity for urate and chloride but not for PAH. Both membrane vesicle preparations also permit urate translocation by simple diffusion. A model for the transcellular reabsorption and secretion of urate in the rat proximal tubule is proposed. This model is based on the vesicle studies, and it can potentially explain the majority of urate transport data obtained with in vivo techniques.


2004 ◽  
Vol 287 (4) ◽  
pp. F789-F796 ◽  
Author(s):  
Matthew A. Bailey

The present study used a stationary microperfusion technique to investigate in vivo the effect of P2Y1 receptor activation on bicarbonate reabsorption in the rat proximal tubule. Proximal tubules were perfused with a bicarbonate Ringer solution before flow was stopped by means of an oil block. The recovery of lumen pH from the initial value (pH 8.0) to stationary values (pH ∼6.7) was recorded by a H+-sensitive microelectrode inserted downstream of the perfusion pipette and oil block. The stationary pH value and the t of pH recovery were used to calculate bicarbonate reabsorption ( JHCO3). Both EIPA and bafilomycin A1 caused significant reductions in proximal tubule JHCO3, consistent with the established contributions of Na/H exchange and H+-ATPase to proximal tubule HCO3 reabsorption. The nucleotides ADP and, to a lesser extent, ATP reduced JHCO3 but AMP and UTP were without effect. 2MeSADP, a highly selective agonist of the P2Y1 receptor, reduced JHCO3 in a dose-dependent manner. MRS-2179, a P2Y1 receptor-specific antagonist, abolished the effect of 2MeSADP, whereas theophylline, an antagonist of adenosine (P1) receptors, did not. The inhibitory action of 2MeSADP was blocked by inhibition of protein kinase C and reduced by inhibition of protein kinase A. The effects of EIPA and 2MeSADP were not additive. The data provide functional evidence for P2Y1 receptors in the apical membrane of the rat proximal tubule: receptor activation impairs acidification in this nephron segment.


1988 ◽  
Vol 254 (6) ◽  
pp. F851-F855 ◽  
Author(s):  
F. Y. Liu ◽  
M. G. Cogan

We previously found, using an in vivo microperfusion pump rate of 30 nl/min, that proton secretion in the early (S1) proximal convoluted tubule (PCT) of the Munich-Wistar rat exhibited saturation kinetics. The maximal transport capacity was very high, approximately 500–600 peq.mm-1.min-1. The present studies assessed the change in early PCT acidification kinetics in response to an increase in microperfusion rate to 45 nl/min. First, bicarbonate permeability in the early PCT was measured and was found to be flow dependent. Proton secretion was then calculated using perfusate bicarbonate concentrations from 8 to 100 mM. Saturation of early proximal acidification (Vmax) still occurred at approximately 500–600 peq.mm-1.min-1, but the bicarbonate concentration effecting half-maximal acidification (apparent Km) decreased (from approximately 11 mM at 30 nl/min perfusion rate to less than 6 mM at 45 nl/min). By increasing luminal perfusion rate further to 60 nl/min at constant luminal bicarbonate concentration (25 mM), we confirmed that luminal flow rate did not affect the maximal level of acidification. Similar flow-dependent changes in acidification kinetics in the late PCT were also found, as has been previously shown. In conclusion, although an increase in luminal flow increased bicarbonate permeability and apparent affinity for substrate transport, there was no effect on maximal acidification rate in the early PCT.


2008 ◽  
Vol 295 (1) ◽  
pp. F37-F41 ◽  
Author(s):  
Aaron Kulick ◽  
Carolina Panico ◽  
Pritmohinder Gill ◽  
William J. Welch

Adenosine mediates Na+ reabsorption in the proximal tubule (PT) and other segments by activating adenosine type 1 receptors (A1-AR). We tested the hypothesis that A1-AR in the PT is regulated by salt intake and participates in the kidney adaptation to changes in salt intake. Absolute fluid reabsorption ( Jv) was measured by direct in vivo microperfusion and recollection in rats maintained on low (LS; 0.03% Na, wt/wt)-, normal (NS; 0.3% Na)-, and high-salt (HS; 3.0% Na) diets for 1 wk. The effect of microperfusion of BG9719 a highly selective inhibitor of A1-ARs or adenosine deaminase (AD), which metabolizes adenosine, was measured in each group. Jv was higher in PT from LS rats (LA: 2.8 ± 0.2 vs. NS: 2.1 ± 0.2 nl·min−1·mm−1, P < 0.001). Jv in HS rats was not different from NS. BG9719 reduced Jv in LS rats by 66 ± 6% (LS: 2.8 ± 0.2 vs LS+CVT: 1.3 ± 0.3 nl·min−1·mm−1, P < 0.001), which was greater than its effect in NS (45 ± 4%) or HS (41 ± 4%) rats. AD reduced Jv similarly, suggesting that A1-ARs are activated by local production of adenosine. Expression of A1-AR mRNA and protein was higher ( P < 0.01) in microdissected PTs in LS rats compared with NS and HS. We conclude that A1-ARs in the PT are increased by low salt intake and that A1-AR participates in the increased PT reabsorption of solute and fluid in response to low salt intake.


1984 ◽  
Vol 247 (6) ◽  
pp. F932-F938 ◽  
Author(s):  
G. Planelles ◽  
A. Kurkdjian ◽  
T. Anagnostopoulos

Double-barreled, selective microelectrodes filled with liquid ion exchanger were used to determine proximal tubule cell pH (pHcell), luminal pH (pHlum), and peritubular capillary blood pH (pHbl.pt) in Necturus kidney in vivo. The average pHbl.pt of 16 animals was 7.64 +/- 0.3; pHcell was 7.36 +/- 0.02 (n = 50), and pHlum was 7.50 +/- 0.05 (n = 16). Because of the variability in pHbl.pt from one animal to another, we studied the blood/cell/lumen pH differences. We sequentially measured with a single microelectrode pHcell and pHlum, and then pHbl.pt in an adjacent peritubular capillary. In 25 such paired determinations, the average pHbl.pt - pHcell difference was 0.28 +/- 0.03, cell acid, and the pHbl.pt - pHlum difference was 0.14 +/- 0.02, lumen acid. The pHcell in this series was significantly more acid than the pHlum (by 0.14 +/- 0.02), but in a few instances the pH gradient across the apical cell membrane was inversed. All measurements were performed in the initial portion of the proximal tubule. We conclude that 1) proximal cell pH is acid with regard to peritubular blood pH, 2) the proximal tubule of Necturus kidney is capable of establishing a small transepithelial pH difference (lumen acid), and 3) pHcell is generally more acid then pHlum.


1979 ◽  
Vol 236 (6) ◽  
pp. F526-F529 ◽  
Author(s):  
T. F. Knight ◽  
H. O. Senekjian ◽  
S. Sansom ◽  
E. J. Weinman

The in vivo microperfusion technique was employed to examine urate absorption in the proximal convoluted tubule of the rat kidney using [2–14C]urate as the marker for fractional urate absorption. With NaCl as the perfusion solution, water absorption averaged 2.53 +/- 0.16 nl.min-1.mm tubule-1, and the fractional absorption of [2–14C]urate averages 11.6 +/- 1.0%/mm tubule. The addition of D-glucose (50 mg/100 ml) enhanced water absorption to 3.62 +/- 0.19 nl.min-1.mm tubule-1, but inhibited fractional urate absorption to 6.6 +/- 1.2%/mm tubule. Phloridzin (4.4 mg/100 ml), 2-deoxy-D-glucose (45.6 mg/100 ml), and 3-O-methyl-D-glucose (53.9 mg/100 ml) also inhibited the absorption of [2–14C]urate to the same degree as did D-glucose despite differing effects on water absorption. The addition of probenecid (2.8 mg/100 ml) to the NaCl perfusion solution had no effect on water absorption but inhibited [2–14C]urate absorption to 6.4 +/- 0.6%/mm tubule. The addition of both probenecid and phloridzin further reduced [2–14C-A1urate absorption to 3.8 +/- 0.7%/mm tubule. Probenecid alone had no effect on glucose transport. These studies suggest that the presence of either certain hexose sugars, phloridzin, or probenecid in the lumen of the proximal convoluted tubule inhibits the tubular absorption of urate.


Sign in / Sign up

Export Citation Format

Share Document