Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles

1990 ◽  
Vol 258 (3) ◽  
pp. F660-F669 ◽  
Author(s):  
D. Casellas ◽  
L. C. Moore

Videometric measurements of changes in vessel lumen diameters were made to investigate autoregulatory and tubuloglomerular feedback (TGF) responses of early efferent arterioles (EA), mid-to-late afferent arterioles (MAA), and terminal, juxtaglomerular afferent arterioles (JAA) in rat juxtamedullary nephrons in vitro. High-contrast shadow-cast images of blood-perfused arterioles at the glomerular vascular pole were obtained with incident illumination and long-working-distance objectives fitted to a compound microscope. In response to an increase in blood perfusion pressure from 60 to 140 mmHg, strong autoregulatory vasoconstriction was observed in the MAA and JAA, with respective reductions in mean luminal diameter of 23 +/- 4 and 40 +/- 4% (mean +/- SE); EA diameter was unchanged. In response to TGF excitation by direct microinjection of Ringer solution into the cortical thick ascending limb segment near the macula densa, JAA luminal diameter decreased by 34 +/- 5%. The TGF responses were completely inhibited by the addition of 0.1 mM furosemide to the tubular injectate. Calcium channel blockade achieved by adding 1 microM nimodipine to the superfusate had no effect on early EA diameter but produced a blood pressure-dependent JAA and MAA vasodilation and complete inhibition of autoregulatory responses. These results provide direct evidence that the distal afferent arteriole in juxtamedullary nephrons is a major effector site for both renal autoregulation and tubuloglomerular feedback.

1995 ◽  
Vol 268 (2) ◽  
pp. F338-F346 ◽  
Author(s):  
N. Bouriquet ◽  
D. Casellas

The influence of guanosine 3',5'-cyclic monophosphate (cGMP)-dependent dilators on autoregulatory responses (AR) of arcuate arteries (ArcA) and afferent arterioles at early sites and at juxtaglomerular sites (JAA) was assessed by videomicroscopy using in vitro blood-perfused juxtamedullary nephron preparations. AR were quantified as fractional changes in luminal diameter induced by doubling blood perfusion pressure (60-120 mmHg). Baseline AR ranged from 17 +/- 2% to 21 +/- 2% in ArcA and from 24 +/- 2% to 34 +/- 4% in JAA. Direct perivascular applications of increasing concentrations of 8-bromo-cGMP (8-BrcGMP, 10 microM to 1 mM), of the NO donors sodium nitroprusside (10 microM to 1 mM) and 3-morpholino-sydnonimine chlorhydrate (SIN1; 10 microM to 1 mM), and of rat atrial natriuretic factor (ANF, 0.1 nM to 10 nM) dose- and pressure-dependently dilated all vessels at 60 mmHg. Concomitantly, AR values were dose-dependently reduced or reversed to pressure-induced dilations. During application of 8-BrcGMP and NO donors, the segmental gradient of sensitivity of AR was ArcA > JAA; the opposite gradient was found with ANF (i.e., JAA > ArcA). The present results demonstrate that compounds known to utilize the cGMP-signaling pathway act as modulators of AR along the juxtamedullary preglomerular vasculature.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ying Ge ◽  
Fan Fan ◽  
Sydney R Murphy ◽  
Jan Michael Williams ◽  
Ruisheng Liu ◽  
...  

Previous studies have indicated that a deficiency in the formation of 20-HETE in the proximal tubule and thick ascending limb of Henle in Dahl S rats increases sodium reabsorption and contributes to the development of hypertension. The present study examined whether the lack of 20-HETE production in the renal vasculature contributes to the progression of renal injury by altering the myogenic or tubuloglomerular feedback (TGF) response of the afferent arteriole (Af-Art). The production of 20-HETE was significantly lower by 54% in renal microvessels isolated from the kidneys of Dahl S rats versus that seen than in SS.5BN consomic strain in which chromosome 5 from the Brown Norway (BN) rat containing the CYP4A genes responsible for the formation of 20-HETE was transferred into the Dahl S genetic background. The luminal diameter of the Af-Art decreased by 14.7± 1.5% (from 20.5 ± 0.7 to 17.5 ± 0.8 μm, n=6) in SS.5BN rats whereas the diameter of the Af-Art remained unaltered in Dahl S rats (from 20.1 ± 0.6 to 21.7 ± 0.6 μm, n=7) when the perfusion pressure was increased from 60 mmHg to 120 mmHg. In other experiments, adenosine (1 μM) reduced the diameter of the Af-Art in the SS.5BN rats by 15±0.7% (from 20.1 ±0.4 to 17.1 ± 0.9 μm, n=3) whereas the Af-Art of Dahl S rats was unaltered. However, administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM, n=6), or a selective 20-HETE antagonist, 6, 15-20-HEDE (10 μM, n=6) completely blocked the myogenic and adenosine responses in the Af-Art of SS.5BN rats but it had no effect in Dahl S rats. Administration of a 20-HETE agonist, 5, 14-20-HEDE (1 μM) restored the myogenic response (from 20.7 ± 0.7 to 17.6 ± 0.6 μm, n=7) and vasoconstrictor response to adenosine in the Af-Art of Dahl S rats. These studies confirm the key role of 20-HETE in modulating the responsiveness of the Af-Art and indicate that a deficiency in the formation of 20-HETE in renal microvessels contributes to the marked susceptibility of Dahl S rats to develop hypertension induced renal injury.


1999 ◽  
Vol 277 (1) ◽  
pp. F113-F120 ◽  
Author(s):  
Atsuhiro Ichihara ◽  
L. Gabriel Navar

To assess the afferent arteriolar autoregulatory response during increased activity of the tubuloglomerular feedback (TGF) mechanism and to delineate the contribution of neuronal nitric oxide synthase (nNOS) to this response, afferent arteriolar diameter responses to changes in renal perfusion pressure (RPP) were monitored in vitro using the blood-perfused rat juxtamedullary nephron preparation. At RPP of 100 mmHg, basal afferent arteriolar diameter averaged 21.1 ± 1.4 μm ( n = 9). The initial and sustained constrictor responses of afferent arterioles to a 60-mmHg increase in RPP averaged 14.8 ± 1.4% and 13.3 ± 1.3%, respectively. Acetazolamide treatment, which enhances TGF responsiveness by increasing distal nephron volume delivery, significantly decreased basal afferent arteriolar diameter by 8.2 ± 0.5% and enhanced the initial response (25.5 ± 2.3%) to a 60-mmHg increase in RPP but did not alter the sustained response (14.3 ± 1.5%). In another series of experiments, nNOS inhibition with 10 μM S-methyl-l-thiocitrulline (l-SMTC) significantly decreased afferent arteriolar diameter from 20.3 ± 1.3 to 18.3 ± 1.1 μm ( n = 7) and enhanced both the initial (34.4 ± 3.5%) and sustained constrictor responses (27.6 ± 2.9%) to a 60-mmHg increase in RPP. Treatment with acetazolamide further enhanced both initial (56.4 ± 3.0%) and sustained responses (54.6 ± 2.7%). Interruption of distal delivery by transection of the loops of Henle prevented the enhanced responses to increases in RPP elicited with either acetazolamide orl-SMTC. These results indicate that nNOS contributes to the counteracting resetting process of biphasic afferent arteriolar constrictor responses to increases in RPP through a TGF-dependent mechanism.


2005 ◽  
Vol 288 (5) ◽  
pp. F1069-F1077 ◽  
Author(s):  
Kumar Sharma ◽  
Anthony Cook ◽  
Matt Smith ◽  
Cathryn Valancius ◽  
Edward W. Inscho

Impaired autoregulation in chronic kidney disease can result in elevation of glomerular capillary pressure and progressive glomerular damage; however, the factors linking chronic glomerular disorders to impaired autoregulation have not been identified. We tested the hypothesis that the cytokine most closely associated with progressive glomerular disease, transforming growth factor (TGF)-β, may also attenuate autoregulation. Kidneys from normal rats were prepared for videomicroscopy, using the blood-perfused juxtamedullary nephron technique. Autoregulatory responses were measured under control conditions and during superfusion with TGF-β1 (10 ng/ml). Control afferent arteriolar diameter averaged 18.4 ± 1 μm and significantly decreased to 16.3 ± 0.9 and 13.2 ± 0.8 μm at perfusion pressures of 130 and 160 mmHg, respectively. In the presence of TGF-β1, autoregulatory responses were completely blocked. In similar experiments performed using PDGF-BB (10 ng/ml) and HGF (25 ng/ml), the normal autoregulatory response was not affected. In vitro studies, using isolated preglomerular vascular smooth muscle cells, revealed that exposure to TGF-β1 stimulated a rapid increase in reactive oxygen species (ROS) that was inhibited by NADPH oxidase inhibitors. In situ studies, with dihydroethidium staining, revealed a marked increase in renal vessel ROS production on exposure to TGF-β1. Pretreatment of the juxtamedullary afferent arterioles with tempol, a ROS scavenger, or with apocynin, a NADPH oxidase inhibitor, prevented the impaired autoregulation induced by TGF-β1. These data reveal a novel hemodynamic pathway by which TGF-β could lead to progressive glomerular injury by impairing normal renal microvascular function.


Hypertension ◽  
2020 ◽  
Vol 75 (2) ◽  
pp. 405-412 ◽  
Author(s):  
Jin Wei ◽  
Jinxiu Zhu ◽  
Jie Zhang ◽  
Shan Jiang ◽  
Larry Qu ◽  
...  

Impaired renal autoregulation permits more transmission of disturbance in systemic blood pressure, which initiates barotrauma in intrarenal microvasculatures such as glomerular and tubulointerstitial capillaries, contributing to the development of kidney damage and deterioration in renal function, especially under the conditions with high blood pressure. Although it has been postulated that autoregulatory efficiency is attenuated in the aging kidney, direct evidence remains lacking. In the present study, we measured the autoregulation of renal blood flow, myogenic response of afferent arteriole (Af-Art), tubuloglomerular feedback in vivo with micropuncture, as well as tubuloglomerular feedback in vitro in isolated perfused juxtaglomerular apparatus in young and aged C57BL/6 mice. We found that renal blood flow was not significantly changed in response to a defined elevation of renal arterial pressure in young mice but significantly increased in aged mice. Additionally, myogenic response of Af-Art measured by microperfusion with a stepwise increase in perfusion pressure was significantly blunted in the aging kidney, which is associated with the attenuation of intraluminal pressure-induced intracellular calcium increases, as well as the reduced expression of integrin α5 (Itga5) in Af-Art. Moreover, both tubuloglomerular feedback in vivo and in vitro were nearly inactive in the aging kidney, which is associated with the significantly reduced expression of adenosine A1 receptor (A1AR) and suppressed vasoconstrictor response to adenosine in Af-Art. In conclusion, this study demonstrates that aging impairs renal autoregulation with blunted myogenic response and inhibited tubuloglomerular feedback response. The underlying mechanisms involve the downregulations of integrin α5 and A1AR in the Af-Art.


1994 ◽  
Vol 267 (5) ◽  
pp. F879-F887 ◽  
Author(s):  
T. Takenaka ◽  
L. M. Harrison-Bernard ◽  
E. W. Inscho ◽  
P. K. Carmines ◽  
L. G. Navar

Utilizing the in vitro blood-perfused juxtamedullary nephron preparation, we examined the effects of alterations in renal arterial pressure on afferent arteriolar blood flow. With video microscopy and cross-correlation techniques, arteriolar inside diameters and centerline erythrocyte velocity were measured to estimate single afferent arteriolar blood flow. In response to random changes in perfusion pressure, afferent arteriolar diameter (n = 8) varied inversely (-0.53 +/- 0.02%/mmHg), and erythrocyte velocity was directly related (1.4 +/- 0.1%/mmHg). Above 95 mmHg, the slope of the relationship between perfusion pressure and afferent arteriolar blood flow did not differ from zero (0.081 +/- 0.053%/mmHg), suggesting efficient autoregulation. When the tubuloglomerular feedback pathway was interrupted by the addition of furosemide (n = 9) or papillectomy (n = 7), there was attenuation of pressure-induced afferent arteriolar constriction, with impairment in blood flow autoregulation (0.60 +/- 0.05%/mmHg). Superfusion with diltiazem abolished autoregulatory responses in afferent arteriolar diameter and blood flow (1.5 +/- 0.2%/mmHg). These data demonstrate the autoregulation of blood flow of individual afferent arterioles in juxtamedullary nephrons and suggest that both tubuloglomerular feedback-dependent and -independent mechanisms are required for autoregulatory responses.


1994 ◽  
Vol 267 (2) ◽  
pp. F249-F256 ◽  
Author(s):  
L. M. Harrison-Bernard ◽  
P. K. Carmines

Experiments were performed to determine the site of arginine vasopressin (AVP)-induced vascular resistance adjustments that result in decreases in papillary blood flow. Simultaneous measurements of luminal diameter and centerline erythrocyte velocity allowed estimation of single-vessel blood flow in in vitro blood-perfused juxtamedullary nephrons. AVP (0.1-1,000 pM) caused concentration-dependent reductions in outer medullary descending vasa recta (OMDVR) blood flow (10 pM) without altering OMDVR diameter. Afferent arteriolar diameter was significantly decreased by 1 pM AVP, whereas arcuate artery diameter was decreased by 100 pM AVP. Increasing the concentration of AVP to 1,000 pM resulted in significant reductions of vessel diameter in interlobular arteries, distal afferent arterioles, and efferent arterioles. The effects of AVP to decrease afferent arteriolar diameter and blood flow were blocked in the presence of V1 receptor antagonist. These data indicate that afferent arterioles exhibit the greatest sensitivity to the vasoconstrictor effects of AVP, whereas OMDVR appear insensitive. We conclude that the change in OMDVR blood flow produced by AVP is not due to a direct effect of the peptide on this vascular segment but to its effect on upstream vessels.


1990 ◽  
Vol 259 (5) ◽  
pp. F778-F782 ◽  
Author(s):  
J. D. Gifford ◽  
J. H. Galla ◽  
R. G. Luke ◽  
R. Rick

We have previously shown that the isolated perfused cortical collecting duct (CCD) from chloride-depleted alkalotic (CDA) rats continues to secrete HCO3 for up to 3 h. To determine whether the sustained alteration in transport was associated with changes in intracellular ion concentrations, we performed energy-dispersive X-ray microanalysis in microdissected tubule bundles obtained from CDA rats and rats with normal acid-base status (CON). Before analysis, the bundles from both groups were incubated for 1 h in vitro in a modified Ringer solution (pH 7.4, 105 mM Cl). Principal (PC) and intercalated cells (IC) of the CCD from CON animals differed in the nuclear concentration of Na (17.0 vs. 24.7 mmol/l cell water), K (192.5 vs. 177.0 mmol/l cell water), and Cl (17.8 vs. 47.8 mmol/l cell water). Cells of the cortical thick ascending limb of Henle (CTAL) had the lowest Na and Cl values (11.5 and 14.8 mmol/l cell water, respectively). CDA resulted in no systematic Cl changes. In the IC the nuclear Na concentration was significantly increased (32.0 vs. 24.7 mmol/l cell water) and in all cells a small reduction in K concentration was detectable. These findings suggest that 1) the different transport functions of IC, PC, and CTAL are associated with differences in the intracellular ion composition, and 2) the sustained HCO3 secretion seen in CCD from CDA rats cannot be explained as the result of intracellular Cl depletion.


1993 ◽  
Vol 265 (5) ◽  
pp. F677-F685 ◽  
Author(s):  
P. K. Carmines ◽  
B. C. Fowler ◽  
P. D. Bell

Experiments were performed to determine the influence of depolarization on intracellular Ca2+ concentration ([Ca2+]i) in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles and thick ascending limb were dissected from rabbit kidney and loaded with fura 2. [Ca2+]i of nonperfused arterioles was monitored using a microscope-based dual-excitation wavelength spectrofluorometry system. Afferent arteriolar [Ca2+]i averaged 150 +/- 11 nM (n = 20) when bathed in Ringer solution containing 1.5 mM Ca2+ and 5 mM K+. Replacement of the normal Ringer solution with one containing 100 mM K+ significantly increased afferent arteriolar [Ca2+]i to 196 +/- 12 nM. This response was abolished in the absence of extracellular Ca2+. In the presence of 1 microM nifedipine, 100 mM K+ elicited a 10% decrease in afferent arteriolar [Ca2+]i (P < 0.05). Thus nifedipine reversed the afferent [Ca2+]i response to depolarization, implicating voltage-gated Ca2+ channels as the influx pathway. In contrast to the behavior of afferent arterioles, the 100 mM K+ solution reduced efferent arteriolar [Ca2+]i from 188 +/- 17 to 148 +/- 13 nM (n = 11, P < 0.01), an effect that was not influenced by nifedipine. These observations support a role for voltage-gated Ca2+ channels in eliciting depolarization-induced increases in afferent arteriolar [Ca2+]i while failing to provide evidence for operation of such a mechanism at efferent arteriolar sites.


1992 ◽  
Vol 2 (11) ◽  
pp. 1578-1586
Author(s):  
K Hayashi ◽  
M Epstein ◽  
R Loutzenhiser ◽  
H Forster

Evidence suggests that diabetes is associated with an impairment of renal autoregulation. It has previously been demonstrated that pressure-induced (myogenic) afferent arteriolar vasoconstriction is well preserved in the isolated perfused hydronephrotic kidney. In this study, pressure-induced afferent arteriolar vasoconstriction was examined in kidneys from streptozotocin-induced diabetic rats. Vessel diameters were measured by videomicroscopy as renal arterial pressure was elevated from 80 to 180 mm Hg. In normal kidneys, the afferent arteriole vasoconstricted progressively as renal arterial pressure was increased (-24 +/- 2% decrement in diameter at 180 mm Hg; N = 35; P less than 0.001). In contrast, afferent arterioles of diabetic kidneys exhibited a greatly attenuated response to pressure (i.e., -3 +/- 2% change at 180 mm Hg; N = 60). In vitro treatment with 100 microM ibuprofen completely restored myogenic vasoconstriction (-21 +/- 2% change at 180 mm Hg), but did not alter myogenic responses of control (i.e., nondiabetic) kidneys. The control of hyperglycemia by insulin treatment resulted in a partial preservation of myogenic vasoconstriction (i.e., -11 +/- 3% change at 180 mm Hg), which was further restored by the administration of a low dose (10 microM) of ibuprofen (-21 +/- 1% change at 180 mm Hg). These observations indicate that diabetes is associated with an impaired responsiveness of the afferent arteriole to pressure that is mediated by an alteration in eicosanoid metabolism. This deranged renal microcirculatory response to pressure may represent a functional impairment of the diabetic kidney that may contribute to the progression of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document