RT-PCR microlocalization of mRNA for guanylyl cyclase-coupled ANF receptor in rat kidney

1991 ◽  
Vol 261 (6) ◽  
pp. F1080-F1087 ◽  
Author(s):  
Y. Terada ◽  
T. Moriyama ◽  
B. M. Martin ◽  
M. A. Knepper ◽  
A. Garcia-Perez

Microlocalization of mRNA coding for the guanylyl cyclase-coupled atrial natriuretic factor (ANF) receptor was carried out in the rat kidney. We used a combination of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, and vasa recta bundles. Relative quantitation of the resulting amplified cDNA utilized densitometry of autoradiograms from Southern blots probed with a specific 32P-labeled probe. Among renal tubule segments, the largest signal was found in the terminal inner medullary collecting duct (IMCD). Slightly smaller signals were found in the initial IMCD and in loop of Henle segments from the inner medulla. Readily detectable signals were also seen in the following segments (in descending order): cortical collecting duct, proximal convoluted tubule, medullary thick ascending limb, cortical thick ascending limb, distal convoluted tubule, and outer medullary collecting duct. Large signals were also detected in glomeruli and in vasa recta bundles from the inner stripe of the outer medulla. Based on these results, we conclude that 1) renal microlocalization of specific mRNAs coding for hormone receptors is feasible through application of the RT-PCR procedure in microdissected renal tubules and vascular elements, and 2) the gene for the guanylyl cyclase-coupled ANF receptor is broadly expressed along the nephron, raising the possibility that multiple sites of ANF action are present.

2000 ◽  
Vol 278 (4) ◽  
pp. H1248-H1255 ◽  
Author(s):  
Thomas L. Pallone ◽  
Erik P. Silldorff ◽  
Zhong Zhang

The intracellular calcium ([Ca2+]i) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10− 8 M) caused [Ca2+]i to fall in proportion to the resting [Ca2+]i ( r =0.82) of the endothelium. ANG II (10− 8 M) also inhibited both phases of the [Ca2+]i response generated by bradykinin (BK, 10− 7 M), 835 ± 201 versus 159 ± 30 nM (peak phase) and 169 ± 26 versus 103 ± 14 nM (plateau phase) (means ± SE). Luminal ANG II reduced BK (10− 7 M)-stimulated plateau [Ca2+]i from 180 ± 40 to 134 ± 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca2+]i to 113 ± 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10− 8 M) caused [Ca2+]i to fall from 352 ± 149 to 105 ± 37 nM. This effect occurred at a threshold ANG II concentration of 10− 10 M and was maximal at 10− 8 M. ANG II inhibited both the rate of Ca2+ entry into [Ca2+]i-depleted endothelia and the rate of Mn2+ entry into [Ca2+]i-replete endothelia. In contrast, ANG II raised [Ca2+]i in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca2+]i from baselines of 99 ± 33 and 53 ± 11 to peaks of 200 ± 47 and 65 ± 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca2+-dependent vasodilators to modulate vasomotor tone in vascular bundles.


1995 ◽  
Vol 269 (4) ◽  
pp. F461-F468 ◽  
Author(s):  
F. C. Brosius ◽  
K. Nguyen ◽  
A. K. Stuart-Tilley ◽  
C. Haller ◽  
J. P. Briggs ◽  
...  

Chloride/base exchange activity has been detected in every mammalian nephron segment in which it has been sought. However, in contrast to the Cl-/HCO3- exchanger AE1 in type A intercalated cells, localization of AE2 within the kidney has not been reported. We therefore studied AE2 expression in rat kidney. AE2 mRNA was present in cortex, outer medulla, and inner medulla. Semiquantitative polymerase chain reaction of cDNA from microdissected tubules revealed AE2 cDNA levels as follows [copies of cDNA derived per mm tubule (+/- SE)]: proximal convoluted tubule, 688 +/- 161; proximal straight tubule, 652 +/- 189; medullary thick ascending limb, 1,378 +/- 226; cortical thick ascending limb, 741 +/- 24; cortical collecting duct, 909 +/- 71; and outer medullary collecting duct, 579 +/- 132. AE2 cDNA was also amplified in thin limbs and in inner medullary collecting duct. AE2 polypeptide was detected in all kidney regions. AE2 mRNA and protein were also detected in several renal cell lines. The data are compatible with the postulated roles of AE2 in maintenance of intracellular pH and chloride concentration and with its possible participation in transepithelial transport.


1996 ◽  
Vol 271 (4) ◽  
pp. C1303-C1315 ◽  
Author(s):  
F. Ciampolillo ◽  
D. E. McCoy ◽  
R. B. Green ◽  
K. H. Karlson ◽  
A. Dagenais ◽  
...  

Amiloride-sensitive, electrogenic Na+ absorption across the distal nephron plays a vital role in regulating extracellular fluid volume and blood pressure. Recently, two amiloride-sensitive, Na(+)-conducting ion channel cDNAs were cloned. One, an epithelial Na(+)-selective channel (ENaC), is responsible for Na+ absorption throughout the distal nephron. The second, a guanosine 3',5'-cyclic monophosphate (cGMP)-inhibitable cation channel, is conductive to Na+ and Ca2+ and contributes to Na+ absorption across the inner medullary collecting duct (IMCD). As a first step toward understanding the segment-specific contributions(s) of cGMP-gated cation channels and ENaC to Na+ and Ca2+ uptake along the nephron, we used in situ reverse transcription-polymerase chain reaction (RT-PCR) hybridization, solution-phase RT-PCR, and Western blot analysis to examine the nephron and cell-specific expression of these channels in mouse kidney cell lines and/or dissected nephron segments. cGMP-gated cation channel mRNA was detected in proximal tubule, medullary thick ascending limb (mTAL), distal convoluted tubule (DCT), cortical collecting duct (CCD), outer medullary collecting duct (OMCD), and IMCD. cGMP-gated cation channel protein was detected in DCT, CCD, and IMCD cell lines. These observations suggest that hormones that modulate intracellular cGMP levels may regulate Na+, and perhaps Ca2+, uptake throughout the nephron. mRNA for alpha-mENaC, a subunit of the mouse ENaC, was detected in mTAL, DCT, CCD, OMCD, and IMCD. Coexpression of alpha-mENaC and cGMP-gated cation channel mRNAs in mTAL, DCT, CCD, OMCD, and IMCD suggests that both channels may contribute to Na+ absorption in these nephron segments.


1991 ◽  
Vol 261 (2) ◽  
pp. F221-F226 ◽  
Author(s):  
D. E. Kohan

Endothelins regulate nephron sodium and water transport, prostaglandin E2 (PGE2) synthesis, and phospholipid metabolism. Recent studies suggest that renal tubule cells synthesize endothelins. To determine which nephron sites have such potential, endothelin production by cells derived from different nephron segments was examined. Immunoreactive endothelin 1 (ET-1) and endothelin 3 (ET-3) were measured in supernatants of cultured rabbit proximal tubule (PT), medullary thick ascending limb (MTAL), cortical collecting tubule (CCT), and inner medullary collecting duct (IMCD) cells. All cell types released immunoreactive ET-1 and ET-3. However, the amounts of endothelin produced differed as follows: IMCD greater than MTAL greater than CCT much greater than PT for ET-1 and IMCD greater than MTAL = PT = CCT for ET-3; in all cases ET-1 much greater than ET-3. To confirm de novo ET-3 synthesis, IMCD cells were labeled with [35S]cysteine, and the supernatant was immunoprecipitated with anti-ET-3 antibody. Sample and standard ET-3 eluted at identical positions on high-performance liquid chromatographs, confirming de novo synthesis of ET-3 by cultured IMCD cells. These data raise the possibility of an important functional role for nephron-derived endothelin and, in particular, endothelin produced by tubule cells in the medulla.


2000 ◽  
Vol 279 (5) ◽  
pp. F901-F909 ◽  
Author(s):  
Henrik Vorum ◽  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Brian Simonsen ◽  
Inyeong Choi ◽  
...  

An electroneutral Na-HCO3 − cotransporter (NBCN1) was recently cloned, and Northern blot analyses indicated its expression in rat kidney. In this study, we determined the cellular and subcellular localization of NBCN1 in the rat kidney at the light and electron microscopic level. A peptide-derived antibody was raised against the COOH-terminal amino acids of NBCN1. The affinity-purified antibody specifically recognized one band, ∼180 kDa, in rat kidney membranes. Peptide- N-glycosidase F deglycosylation reduced the band to ∼140 kDa. Immunoblotting of membrane fractions from different kidney regions demonstrated strong signals in the inner stripe of the outer medulla (ISOM), weaker signals in the outer stripe of the outer medulla and inner medulla, and no labeling in cortex. Immunocytochemistry demonstrated that NBCN1 immunolabeling was exclusively observed in the basolateral domains of thick ascending limb (TAL) cells in the outer medulla (strongest in ISOM) but not in the cortex. In addition, collecting duct intercalated cells in the ISOM and in the inner medulla also exhibited NBCN1 immunolabeling. Immunoelectron microscopy demonstrated that NBCN1 labeling was confined to the basolateral plasma membranes of TAL and collecting duct type A intercalated cells. Immunolabeling controls were negative. By using 2,7-bis-carboxyethyl-5,6-caboxyfluorescein, intracellular pH transients were measured in kidney slices from ISOM and from mid-inner medulla. The results revealed DIDS-sensitive, Na- and HCO3 −-dependent net acid extrusion only in the ISOM but not in mid-inner medulla, which is consistent with the immunolocalization of NBCN1. The localization of NBCN1 in medullary TAL cells and medullary collecting duct intercalated cells suggests that NBCN1 may be important for electroneutral basolateral HCO3 − transport in these cells.


2004 ◽  
Vol 286 (5) ◽  
pp. F903-F912 ◽  
Author(s):  
Jeppe Praetorius ◽  
Young-Hee Kim ◽  
Elena V. Bouzinova ◽  
Sebastian Frische ◽  
Aleksandra Rojek ◽  
...  

Primary cultures of rat inner medullary collecting duct (IMCD) cells Na+ dependently import [Formula: see text] across the basolateral membrane through an undefined transport protein. We used RT-PCR, immunoblotting, and immunohistochemistry to identify candidate proteins for this basolateral [Formula: see text] cotransport. The mRNA encoding the electroneutral [Formula: see text] cotransporter NBCn1 was detected as the only [Formula: see text] cotransporter in the rat inner medulla (IM) among the five characterized Na+-dependent [Formula: see text] transporters. The mRNA of a yet uncharacterized transporter-like protein, BTR1, was also present in the IM, but its expression in microdissected tubules seemed restricted to the thin limbs of Henle's loop. Immunoblotting confirmed the presence of NBCn1 as an ∼180-kDa protein of the rat IM. Anti-NBCn1 immunolabeling was confined to the basolateral plasma membrane domain of IMCD cells in the papillary two-thirds of the IM. Consistent with the presence of NBCn1, IMCD cells possessed stilbene-insensitive, Na+- and [Formula: see text]-dependent pH recovery after acidification, as assessed by fluorescence microscopy using a pH-sensitive intracellular dye. In furosemide-induced alkalotic rats, NBCn1 protein abundance was decreased in both the IM and inner stripe of outer medulla (ISOM) as determined by immunoblotting and immunohistochemistry. In contrast, NBCn1 abundance in the IM and ISOM was unchanged in NaHCO3-loaded animals, and the NBCn1 abundance increased only in the ISOM after NH4Cl loading. In conclusion, NBCn1 is a basolateral [Formula: see text] cotransporter of IMCD cells and is differentially regulated in IMCD and medullary thick ascending limb.


1998 ◽  
Vol 46 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Ying Hu ◽  
Ning Ma ◽  
Miao Yang ◽  
Reiji Semba

Recent studies suggest that carbon monoxide (CO), which is formed by the enzyme heme oxygenase (HO) during the conversion of heme to biliverdin, shares some of the chemical and biological properties of nitric oxide (NO) and may play roles similar to those of NO. Heme oxygenase activity in the kidney has been reported for many years, and there are some reports on the expression of mRNA for two HO isozymes (HO-1 and HO-2) and cellular localization of HO-1 protein. However, cellular localization of HO-2 protein in the kidney under normal conditions has not been reported. In the present study we examined the expression and distribution of HO-2 mRNA and HO-2 protein in rat kidney using RNA protection assay and light and electron immunocytochemistry. RNA protection assay confirmed constitutive expression of HO-2 transcript in rat kidney. HO-2 immunoreactivity was selectively found in epithelial cells of the thick ascending limb and distal convoluted tubule, connecting tubule cells, and principal cells of the collecting duct. These results suggest that HO-2 is synthesized in the kidney and that HO-2 in the epithelial cells of renal tubules may serve as a source for CO generation under normal conditions.


2004 ◽  
Vol 286 (6) ◽  
pp. F1163-F1170 ◽  
Author(s):  
Sebastian Frische ◽  
Alexander S. Zolotarev ◽  
Young-Hee Kim ◽  
Jeppe Praetorius ◽  
Seth Alper ◽  
...  

Three splice variants of anion exchanger (AE)2 (AE2a, b, and c) have been described in the rat, but their relative distribution in rat kidney is not known. The purpose of this study was to describe the segmental and cellular distribution of the AE2 isoforms in the rat kidney and to evaluate whether the expression levels of these AE2 isoforms are regulated independently in response to chronic NH4Cl loading. Two polyclonal antibodies were generated, respectively, recognizing a NH2-terminal peptide unique to AE2a and an amino acid sequence common to AE2a and AE2b. Antibody specificities were tested using cells transfected separately with the AE2a, AE2b, and AE2c isoforms. Immunohistochemistry on sections of paraffin-embedded rat kidneys showed a distribution of AE2a/AE2b labeling in the kidney similar to the distribution of AE2 in the rat kidney reported previously. AE2 is highly expressed in the medullary thick ascending limb, cortical thick ascending limb (cTAL), and macula densa. The pattern of AE2a-specific labeling differed from the pattern of AE2a/AE2b labeling in that relatively more of the total immunolabel was observed in the terminal inner medullary collecting duct. NH4Cl loading (0.033 mmol NH4Cl/g body wt for 7 days) did not change the labeling of AE2 isoforms in the medulla, whereas the labeling in the cortex was intensified and included more distal parts of the cTAL. Immunoblotting confirmed upregulation of AE2a/b expression in the cortex. These results indicate that AE2a and AE2b are differentially expressed and regulated in the rat kidney. The regulation following NH4Cl loading of AE2b in the cTAL suggests a role for AE2 in transepithelial bicarbonate reabsorption in this segment.


1994 ◽  
Vol 267 (2) ◽  
pp. F215-F222 ◽  
Author(s):  
Y. Terada ◽  
K. Tomita ◽  
H. Nonoguchi ◽  
T. Yang ◽  
F. Marumo

The present study was undertaken to investigate the presence of C-type natriuretic peptide (CNP) mRNA and its receptor, natriuretic peptide B-type receptor (ANPR-B) mRNA, in rat renal structures. The microlocalization of mRNAs coding for CNP and ANPR-B was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, vasa recta bundle, and arcuate arteries. The PCR signal for CNP was detected in glomerulus, vasa recta bundle, and arcuate artery. The PCR product of ANPR-B was widely present in renal structures. Relatively large amounts of ANPR-B PCR product were detected in glomerulus, vasa recta bundle, arcuate artery, and distal nephron segments. A relatively high concentration of CNP (10(-7) M) stimulated guanosine 3',5'-cyclic monophosphate accumulation in glomerulus, medullary thick ascending limb, cortical collecting duct, and inner medullary collecting duct. Our data demonstrate that CNP can be produced locally in the glomerulus and renal vascular system and that ANPR-B is widely distributed in renal structures. Thus CNP may influence renal function and act in autocrine and paracrine fashions in the kidney.


2000 ◽  
Vol 278 (4) ◽  
pp. F659-F666 ◽  
Author(s):  
Masayuki Tanemoto ◽  
Carlos G. Vanoye ◽  
Ke Dong ◽  
Richard Welch ◽  
Takaaki Abe ◽  
...  

Recent studies showed that coexpression of Kir6.1 or Kir6.2 with the sulfonylurea receptor (SUR1, SUR2A, or SUR2B) reconstituted an inwardly rectifying, ATP-sensitive K+channel that was inhibited by glibenclamide (2, 15–17). Here we report the isolation of a rat homolog of mouse SUR2B (denoted rSUR2B) from a rat kidney cDNA library. The rSUR2B sequence contains a 4,635-bp open reading frame that encodes a 1,545-amino acid polypeptide, showing 67% shared identity with SUR1 (a pancreatic β-cell isoform) and 98% with both SUR2A (a brain isoform) and SUR2B (a vascular smooth muscle isoform). Consistent with the predicted structures of other members of the ATP-binding cassette (ABC) superfamily, the sequence of rSUR2B contains 17 putative membrane-spanning segments. Also, predicted Walker A and B consensus binding motifs, present in other ABC members, are conserved in the rSUR2B sequence. RT-PCR revealed that rSUR2B is widely expressed in various rat tissues including brain, colon, heart, kidney, liver, skeletal muscle, and spleen. The intrarenal distribution of the rSUR2B transcript was investigated using RT-PCR and Southern blot of microdissected tubules. The rSUR2B transcript was detected in proximal tubule, cortical thick ascending limb, distal collecting tubule, cortical collecting duct, and outer medullary collecting duct, but not medullary thick ascending limb. This distal distribution overlaps with that of ROMK. Coexpression of rSUR2B with ROMK2 cRNA (in 1:10 ratio) in Xenopus laevis oocytes resulted in whole cell Ba2+-sensitive K+ currents that were inhibited by glibenclamide (50% inhibition with 0.2 mM glibenclamide). In contrast, rSUR2B did not confer significant glibenclamide sensitivity to oocytes coinjected with ROMK1 or ROMK3. The interaction between ROMK2 and rSUR2B was further studied by coimmunoprecipitation of in vitro translated rSUR2B and ROMK2. In agreement with the functional data, the rSUR2B protein was coimmunoprecipitated with ROMK2 in the ROMK2-rSUR2B cotranslated samples. Our data demonstrate that ROMK2, but not ROMK1 and ROMK3, can interact with rSUR2B to confer a sulfonylurea-sensitive K+ channel, implicating SUR proteins in forming and regulating renal ATP-sensitive K+ channels. The ROMK isoform specificity of glibenclamide effects suggests that the NH2 terminus of the ROMK protein mediates rSUR2B-ROMK2 interactions.


Sign in / Sign up

Export Citation Format

Share Document