Activation of acid-secreting intercalated cells in rabbit collecting duct with ammonium chloride loading

1994 ◽  
Vol 266 (4) ◽  
pp. F633-F645 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
J. K. Cannon ◽  
C. C. Tisher

In normal rabbit, immunolabeling of intercalated cells in the outer medullary collecting duct (OMCD) demonstrates band 3-like protein in the basolateral plasma membrane (15) and H(+)-adenosinetriphosphatase (H(+)-ATPase) in the apical plasma membrane and cytoplasmic vesicles (30). However, in type A intercalated cells in the cortical collecting duct (CCD), band 3-like protein is located primarily in multivesicular bodies and cytoplasmic vesicles (15), whereas H(+)-ATPase is present in cytoplasmic vesicles only in most intercalated cells (30). In this study, we observed the effect of chronic acid loading on immunolocalization of these transporters in the collecting duct. Adult New Zealand White rabbits received either normal tap water (controls) or 75 mM NH4Cl for 12 days plus eight daily gavages of 2-6 meq NH4Cl/kg body wt. At time of death, mean urine pH of acid-loaded animals was 5.96 (SD = 0.69), vs. 8.47 (SD = 0.07) in controls. Kidneys were fixed by in vivo perfusion and processed for light and electron microscopic immunoperoxidase localization of band 3-like protein and immunogold localization of H(+)-ATPase. In controls, band 3-like protein was largely confined to multivesicular bodies in the majority of positive-staining intercalated cells in the CCD and to the basolateral plasma membrane of intercalated cells in the OMCD. In acid-loaded rabbits, band 3 protein-positive intercalated cells in the inner CCD and the in the outer stripe of the OMCD (OMCDo) were strikingly stellate in form. Basolateral plasma membrane label was intensified, while the number of labeled multivesicular bodies was diminished. Morphometric analysis demonstrated an increase in the amount of basolateral plasma membrane in these intercalated cells. In control rabbits, H(+)-ATPase immunoreactivity in intercalated cells in the CCD was located predominantly over cytoplasmic vesicles. A minority of intercalated cells exhibited basolateral plasma membrane label, and only an occasional cell displayed apical plasma membrane label. In acid-loaded rabbits, H(+)-ATPase immunoreactivity was enhanced along the apical plasma membrane of intercalated cells in the inner CCD, and morphometric analysis demonstrated increased apical plasma membrane in band 3-positive intercalated cells in this segment. These results suggest that rabbits respond to acid loading via enhancement of both electrogenic proton secretion and Cl-/HCO3- exchange in intercalated cells in the inner CCD and the OMCDo.

1994 ◽  
Vol 4 (8) ◽  
pp. 1546-1557 ◽  
Author(s):  
J W Verlander ◽  
K M Madsen ◽  
D K Stone ◽  
C C Tisher

In contrast to results obtained in the rat kidney, studies of H+ATPase localization in the rabbit kidney have failed to demonstrate basolateral plasma membrane H+ATPase immunoreactivity in intercalated cells in the cortical collecting duct (CCD). Previous studies have relied on light microscopic immunofluorescence techniques, which have limited resolution. Therefore, the immunogold procedure was used to localize H+ATPase in rabbit collecting ducts at the ultrastructural level. Rabbit kidneys were preserved in vivo with periodate-lysine-paraformaldehyde or glutaraldehyde solutions, and samples of cortex were embedded in Lowicryl K4M. Thin sections were labeled for H+ATPase by the immunogold procedure with a rabbit polyclonal antibody against the 70-kd subunit of bovine brain H+ATPase. Three patterns of localization of H+ATPase were observed. The majority of intercalated cells in the CCD exhibited label over cytoplasmic vesicles only. In these cells, no label was associated with either the apical or basolateral plasma membranes. In a second group of cells, label for H+ATPase was observed along the basolateral plasma membrane and over cytoplasmic vesicles throughout the cell. Rarely, intercalated cells with H+ATPase label along the apical plasma membrane and over the apical cytoplasmic vesicles were observed in the CCD. In the initial collecting tubule and connecting segment, intercalated cells with either pronounced apical or basolateral plasma membrane label prevailed, whereas few cells exhibited label restricted to the cytoplasmic vesicles. In summary, in the rabbit CCD, three patterns of H+ATPase distribution exist in intercalated cells, two of which conform to published models of type A and type B intercalated cells.


1992 ◽  
Vol 262 (2) ◽  
pp. F309-F319 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
J. H. Galla ◽  
R. G. Luke ◽  
C. C. Tisher

We examined the effect of Cl- depletion metabolic alkalosis (CDA) on H(+)-ATPase and band 3 protein localization in intercalated cells (IC) of the rat cortical collecting duct (CCD) and the outer medullary collecting duct (OMCD). After 30 min of peritoneal dialysis against 0.15 M NaHCO3 to produce CDA, or Ringer bicarbonate to serve as controls (CON), both groups were infused intravenously with an 80 mM Cl- solution for 90 min. For CDA vs. CON, physiological parameters were as follows: plasma total CO2, 38.0 +/- 1.1 vs. 27.8 +/- 0.6 meq/l (P less than 0.001); urinary total CO2 excretion, 141 +/- 89 vs. 20 +/- 3 neq.min-1.100 g body wt-1; and urinary Cl- excretion, 20 +/- 10 vs. 486 +/- 144 neq.min-1.100 g body wt-1 (P less than 0.001). H(+)-ATPase was localized in thin sections using a rabbit polyclonal antibody against the 70-kDa subunit of bovine brain H(+)-ATPase. Band 3 protein was localized using a polyclonal antibody against the 43-kDa subunit of the cytoplasmic domain of human erythrocyte band 3 protein. In CON rats, H(+)-ATPase localized along the apical plasma membrane and over the apical cytoplasmic vesicles of type A ICs in the CCD and ICs of the OMCD. H(+)-ATPase was observed along the basolateral plasma membrane and over cytoplasmic vesicles throughout type B ICs. In CDA rats, H(+)-ATPase was only observed over apical cytoplasmic vesicles in type A ICs and in the majority of OMCD ICs. In type B ICs, H(+)-ATPase staining was intensified along the basal plasma membrane in CDA. Band 3 protein was consistently localized in the basolateral plasma membrane of all type A cells in the CCD and ICs of the OMCD in both CON and CDA. In summary, stimulation of HCO3- secretion in rats caused withdrawal of H(+)-ATPase from the apical plasma membrane and storage in apical cytoplasmic vesicles of ICs of the OMCD and type A ICs of the CCD. H(+)-ATPase appeared to be inserted into the basal plasma membrane of type B ICs. These findings suggest that, during correction of CDA, proton secretion by type A and OMCD ICs is suppressed and proton transport across the basolateral plasma membrane of type B ICs is stimulated.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


1992 ◽  
Vol 262 (6) ◽  
pp. F1015-F1022
Author(s):  
K. M. Madsen ◽  
J. Kim ◽  
C. C. Tisher

Intercalated cells (ICs) in the collecting duct and the connecting tubule (CNT) are involved in H+ secretion and HCO3- reabsorption. H+ secretion is mediated by an H(+)-adenosinetriphosphatase in the apical plasma membrane, whereas a band 3-like Cl(-)-HCO3- exchanger in the basolateral membrane is responsible for HCO3- reabsorption. Recent studies have reported that a band 3-like protein is also present in mitochondria in rabbit ICs. The purpose of this study was to establish the subcellular location of the band 3-like Cl(-)-HCO3- exchanger in rabbit ICs by electron microscopic immunocytochemistry using a monoclonal antibody, IVF12, against erythrocyte band 3 protein. Rabbit kidneys were preserved by in vivo perfusion with a paraformaldehyde-lysine-periodate solution and processed for immunocytochemistry using a horseradish peroxidase preembedding technique. Band 3 immunostaining was observed on the basolateral plasma membrane of ICs in the outer medullary collecting duct and type A cells in the cortical collecting duct (CCD) and CNT. In addition, distinct staining for band 3 was present in numerous small vesicles and in multivesicular bodies in type A ICs in the CCD and CNT. However, there was no evidence of band 3 immunostaining of mitochondria or of the apical plasma membrane in any cells of the collecting duct. These observations suggest that basolateral Cl(-)-HCO3- exchangers in type A ICs in the rabbit kidney are stored in intracellular vesicles and possibly degraded in the vascular-lysosomal system when these cells are in a resting state. The previously reported band 3 immunolabeling of mitochondria could not be confirmed.


1996 ◽  
Vol 7 (12) ◽  
pp. 2533-2542 ◽  
Author(s):  
S M Ginns ◽  
M A Knepper ◽  
C A Ecelbarger ◽  
J Terris ◽  
X He ◽  
...  

Two bumetanide-sensitive ion cotransporters that carry Na+, K+, and Cl- in a coupled fashion have been identified. One type, the "absorptive" isoform, carries these ions across the apical plasma membrane of the thick ascending limb of Henle's loop. Another isoform, the "secretory" cotransporter, has been identified in a number of epithelial tissues by physiological means, but its sites of expression in the kidney have not been fully characterized. Complementary DNA believed to code for the secretory isoform (called "BSC2" or "NKCC1") have recently been cloned. This study used a specific affinity-purified antipeptide antibody to this protein for immunolocalization in the rat kidney. Immunoblot studies using this antibody show abundant immunoreactivity against bands of 140-190 and 120 kd in the parotid gland, colon, and stomach, sites where the secretory form of the cotransporter has been identified by physiological techniques. This distribution supports the hypothesis that this isoform represents the secretory form of the cotransporter. Studies in the kidney revealed that the same bands are associated with membrane fractions chiefly in the outer medulla. Immunolocalizations show that immunoreactivity is selectively and intensely localized to the basolateral plasma membrane of a subfraction of outer medullary collecting duct cells. An independently produced monoclonal antibody (T4) specific for Na-K-Cl cotransporter displays the same localization. Dual localizations of cotransporter antibody with respect to antibody specific for principal cells (aquaporin-2) and intercalated cells (band 3 and H(+)-ATPase) show that cotransporter immunoreactivity is localized to alpha-intercalated cells of the outer medullary collecting duct in the rat. This distinctive localization suggests that the secretory form of the cotransporter may play a role in renal NH4+ and/or acid secretion by this cell type.


2003 ◽  
Vol 284 (1) ◽  
pp. F229-F241 ◽  
Author(s):  
Susan M. Wall ◽  
Kathryn A. Hassell ◽  
Ines E. Royaux ◽  
Eric D. Green ◽  
Judy Y. Chang ◽  
...  

Pendrin is an anion exchanger expressed in type B intercalated cells of the cortical collecting duct (CCD). Whether pendrin localizes to other nephron segments with intercalated cells is unknown. Moreover, whether pendrin is expressed in proximal tubule is debated. Thus the distribution of pendrin mRNA and protein expression in mouse kidney was investigated by using light and electron microscopic immunohistochemistry and quantitative real-time PCR. We observed that pendrin mRNA is expressed mainly in cortex. Within cortex, pendrin mRNA is at least fivefold higher in CCD and the connecting tubule (CNT) than in the other segments. Pendrin protein was observed in a subset of cells within the distal convoluted tubule as well as in type B and in non-A-non-B intercalated cells of the CNT and CCD. In type B intercalated cells, pendrin immunoreactivity was highest in apical cytoplasmic vesicles with little immunolabel along the apical plasma membrane. In non-A-non-B intercalated cells, intense pendrin immunoreactivity was detected along the apical plasma membrane. These differences in the subcellular distribution of pendrin immunolabel were confirmed by morphometric analysis. In conclusion, pendrin is expressed in the mouse distal convoluted tubule, CCD, and CNT along the apical plasma membrane of non-A-non-B intercalated cells and in subapical cytoplasmic vesicles of type B intercalated cells.


1989 ◽  
Vol 256 (1) ◽  
pp. F1-F12 ◽  
Author(s):  
D. Brown

The plasma membrane composition of virtually all eucaryotic cells is established, maintained, and modified by the process of membrane recycling. Specific plasma membrane components are inserted by exocytosis of transport vesicles, and are removed by endocytosis of segments of the membrane in which particular proteins are concentrated. In the kidney collecting duct, vasopressin induces the cycling of vesicles that are thought to carry water channels to and from the apical plasma membrane of principal cells, thus modulating the water permeability of this membrane. In the intercalated cells of the collecting duct, hydrogen ion secretion is controlled by the recycling of vesicles carrying proton pumps to and from the plasma membrane. In both cell types, "coated" carrier vesicles are involved, but whereas clathrin-coated vesicles participate in water channel recycling, the vesicles in intercalated cells are coated with the cytoplasmic domains of proton pumps. Following a brief outline of membrane recycling in general, this review summarizes previous data on membrane recycling in the collecting duct and related transporting epithelia and discusses some selected points relating to the role of membrane recycling and cell-specific function in the collecting duct.


1983 ◽  
Vol 245 (6) ◽  
pp. F670-F679 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The collecting duct of the mammalian kidney is involved in urine acidification. Recent studies in the turtle bladder suggest that hydrogen ion secretion in response to elevated CO2 is regulated by insertion of hydrogen pumps into the luminal membrane of the mitochondria-rich cells. Because intercalated cells of the collecting duct are structurally similar to mitochondria-rich cells of the amphibian bladder, we studied the rat outer medullary collecting duct (OMCD) during respiratory acidosis to determine whether changes compatible with hydrogen ion secretion occur in the intercalated cells. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. After collection of physiologic data, the kidneys were fixed by in vivo perfusion and processed for electron microscopy. No changes were observed in the principal cells of the OMCD. Morphometric analysis revealed a significant increase in the surface density of the apical plasma membrane and a decrease in the number of tubulovesicular profiles in the apical region of the intercalated cells throughout the OMCD with respiratory acidosis. There were no changes in surface density of the basolateral membrane. These findings suggest that in response to respiratory acidosis there is transport of membrane from the tubulovesicular membrane compartment to the apical plasma membrane of the intercalated cells.


2002 ◽  
Vol 283 (4) ◽  
pp. F744-F754 ◽  
Author(s):  
Young-Hee Kim ◽  
Tae-Hwan Kwon ◽  
Sebastian Frische ◽  
Jin Kim ◽  
C. Craig Tisher ◽  
...  

Recent studies have demonstrated that a novel anion exchanger, pendrin, is expressed in the apical domain of type B intercalated cells in the mammalian collecting duct. The purpose of this study was 1) to determine the expression and distribution of pendrin along the collecting duct and connecting tubule of mouse and rat kidney and establish whether pendrin is expressed in the non-A-non-B intercalated cells and 2) to determine the intracellular localization of pendrin in the different populations of intercalated cells by immunoelectron microscopy. A peptide-derived affinity-purified antibody was generated that specifically recognized pendrin in immunoblots of rat and mouse kidney. Immunohistochemistry and confocal laser scanning microscopy demonstrated the presence of pendrin in apical domains of all type B intercalated cells in mouse and rat connecting tubule and collecting duct. In addition, strong pendrin immunostaining was observed in non-A-non-B intercalated cells. There was no labeling of type A intercalated cells. Immunoelectron microscopy demonstrated that pendrin was located in the apical plasma membrane and intracellular vesicles of both type B intercalated cells and non-A-non-B cells; the latter was identified by the presence of H+-ATPase in the apical plasma membrane. The results of this study demonstrate that both pendrin and H+-ATPase are expressed in the apical plasma membrane of non-A-non-B intercalated cells, suggesting that these cells are capable of both HCO[Formula: see text] and proton secretion. Furthermore, the presence of pendrin in both the apical plasma membrane and the apical intracellular vesicles of type B and non-A-non-B intercalated cells suggests that HCO[Formula: see text] secretion may be regulated by trafficking of pendrin between the two membrane compartments.


Sign in / Sign up

Export Citation Format

Share Document