Membrane recycling and epithelial cell function

1989 ◽  
Vol 256 (1) ◽  
pp. F1-F12 ◽  
Author(s):  
D. Brown

The plasma membrane composition of virtually all eucaryotic cells is established, maintained, and modified by the process of membrane recycling. Specific plasma membrane components are inserted by exocytosis of transport vesicles, and are removed by endocytosis of segments of the membrane in which particular proteins are concentrated. In the kidney collecting duct, vasopressin induces the cycling of vesicles that are thought to carry water channels to and from the apical plasma membrane of principal cells, thus modulating the water permeability of this membrane. In the intercalated cells of the collecting duct, hydrogen ion secretion is controlled by the recycling of vesicles carrying proton pumps to and from the plasma membrane. In both cell types, "coated" carrier vesicles are involved, but whereas clathrin-coated vesicles participate in water channel recycling, the vesicles in intercalated cells are coated with the cytoplasmic domains of proton pumps. Following a brief outline of membrane recycling in general, this review summarizes previous data on membrane recycling in the collecting duct and related transporting epithelia and discusses some selected points relating to the role of membrane recycling and cell-specific function in the collecting duct.

2000 ◽  
Vol 279 (1) ◽  
pp. F195-F202 ◽  
Author(s):  
Randi B. Silver ◽  
Sylvie Breton ◽  
Dennis Brown

Intercalated cells (ICs) from kidney collecting ducts contain proton-transporting ATPases (H+-ATPases) whose plasma membrane expression is regulated under a variety of conditions. It has been shown that net proton secretion occurs in the distal nephron from chronically K+-depleted rats and that upregulation of tubular H+- ATPase is involved in this process. However, regulation of this protein at the level of individual cells has not so far been examined. In the present study, H+-ATPase activity was determined in individually identified ICs from control and chronically K+-depleted rats (9–14 days on a low-K+ diet) by monitoring K+- and Na+-independent H+ extrusion rates after an acute acid load. Split-open rat cortical collecting tubules were loaded with the intracellular pH (pHi) indicator 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and pHiwas determined by using ratiometric fluorescence imaging. The rate of pHi recovery in ICs in response to an acute acid load, a measure of plasma membrane H+-ATPase activity, was increased after K+ depletion to almost three times that of controls. Furthermore, the lag time before the start of pHirecovery after the cells were maximally acidified fell from 93.5 ± 13.7 s in controls to 24.5 ± 2.1 s in K+-depleted rats. In all ICs tested, Na+- and K+-independent pHi recovery was abolished in the presence of bafilomycin (100 nM), an inhibitor of the H+-ATPase. Analysis of the cell-to-cell variability in the rate of pHi recovery reveals a change in the distribution of membrane-bound proton pumps in the IC population of cortical collecting duct from K+-depleted rats. Immunocytochemical analysis of collecting ducts from control and K+-depleted rats showed that K+-depletion increased the number of ICs with tight apical H+ATPase staining and decreased the number of cells with diffuse or basolateral H+-ATPase staining. Taken together, these data indicate that chronic K+ depletion induces a marked increase in plasma membrane H+ATPase activity in individual ICs.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


2020 ◽  
Vol 318 (4) ◽  
pp. F956-F970 ◽  
Author(s):  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Kit Yee Wong ◽  
Chan-Wei Yang ◽  
Chin-Fu Liu ◽  
...  

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


1991 ◽  
Vol 260 (4) ◽  
pp. F498-F505
Author(s):  
C. L. Emmons ◽  
K. Matsuzaki ◽  
J. B. Stokes ◽  
V. L. Schuster

The rabbit cortical collecting duct (CCD) consists of three major cell types: principal cells transport K+, beta-intercalated cells absorb Cl-, and alpha-intercalated cells secrete H+. We used functional and histological methods to assess axial distribution of these cell types along rabbit CCD. In perfused CCDs, lumen-to-bath Rb+ rate coefficient (an index of principal cell K+ transport) was not different in tubules from outer cortex (1 mm from renal surface) compared with those from inner cortex (2 mm from renal surface), suggesting that principal cell function is homogeneous along the CCD. In contrast, Cl- rate coefficient (a measure of beta-intercalated cell function) was twice as high in CCDs from outer compared with inner cortex, suggesting heterogeneity of beta-intercalated cells along the CCD. To further investigate these regional differences, we fixed and embedded kidneys and identified three cell types in CCD cross sections using carbonic anhydrase staining and peanut lectin binding. Comparing tubule cross sections from outer with those from inner cortex, we found no axial difference in the fraction of cells that were either principal cells (64%) or total (lectin binding and nonlectin binding) intercalated cells (36%). However, the lectin-binding intercalated cell subset was significantly increased in outer compared with inner cortex. We conclude that there is not heterogeneity of principal cells along the rabbit CCD; however, beta-cell number and function are increased in outer CCD. Collecting duct heterogeneity begins within the cortical segment.


1994 ◽  
Vol 266 (4) ◽  
pp. F633-F645 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
J. K. Cannon ◽  
C. C. Tisher

In normal rabbit, immunolabeling of intercalated cells in the outer medullary collecting duct (OMCD) demonstrates band 3-like protein in the basolateral plasma membrane (15) and H(+)-adenosinetriphosphatase (H(+)-ATPase) in the apical plasma membrane and cytoplasmic vesicles (30). However, in type A intercalated cells in the cortical collecting duct (CCD), band 3-like protein is located primarily in multivesicular bodies and cytoplasmic vesicles (15), whereas H(+)-ATPase is present in cytoplasmic vesicles only in most intercalated cells (30). In this study, we observed the effect of chronic acid loading on immunolocalization of these transporters in the collecting duct. Adult New Zealand White rabbits received either normal tap water (controls) or 75 mM NH4Cl for 12 days plus eight daily gavages of 2-6 meq NH4Cl/kg body wt. At time of death, mean urine pH of acid-loaded animals was 5.96 (SD = 0.69), vs. 8.47 (SD = 0.07) in controls. Kidneys were fixed by in vivo perfusion and processed for light and electron microscopic immunoperoxidase localization of band 3-like protein and immunogold localization of H(+)-ATPase. In controls, band 3-like protein was largely confined to multivesicular bodies in the majority of positive-staining intercalated cells in the CCD and to the basolateral plasma membrane of intercalated cells in the OMCD. In acid-loaded rabbits, band 3 protein-positive intercalated cells in the inner CCD and the in the outer stripe of the OMCD (OMCDo) were strikingly stellate in form. Basolateral plasma membrane label was intensified, while the number of labeled multivesicular bodies was diminished. Morphometric analysis demonstrated an increase in the amount of basolateral plasma membrane in these intercalated cells. In control rabbits, H(+)-ATPase immunoreactivity in intercalated cells in the CCD was located predominantly over cytoplasmic vesicles. A minority of intercalated cells exhibited basolateral plasma membrane label, and only an occasional cell displayed apical plasma membrane label. In acid-loaded rabbits, H(+)-ATPase immunoreactivity was enhanced along the apical plasma membrane of intercalated cells in the inner CCD, and morphometric analysis demonstrated increased apical plasma membrane in band 3-positive intercalated cells in this segment. These results suggest that rabbits respond to acid loading via enhancement of both electrogenic proton secretion and Cl-/HCO3- exchange in intercalated cells in the inner CCD and the OMCDo.


2009 ◽  
Vol 297 (2) ◽  
pp. F292-F300 ◽  
Author(s):  
Abinash C. Mistry ◽  
Rickta Mallick ◽  
Janet D. Klein ◽  
Thomas Weimbs ◽  
Jeff M. Sands ◽  
...  

Proper targeting of the aquaporin-2 (AQP2) water channel to the collecting duct apical plasma membrane is critical for the urine concentrating mechanism and body water homeostasis. However, the trafficking mechanisms that recruit AQP2 to the plasma membrane are still unclear. Snapin is emerging as an important mediator in the initial interaction of trafficked proteins with target soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (t-SNARE) proteins, and this interaction is functionally important for AQP2 regulation. We show that in AQP2-Madin-Darby canine kidney cells subjected to adenoviral-mediated expression of both snapin and syntaxins, the association of AQP2 with both syntaxin-3 and syntaxin-4 is highly enhanced by the presence of snapin. In pull-down studies, snapin detected AQP2, syntaxin-3, syntaxin-4, and SNAP23 from the inner medullary collecting duct. AQP2 transport activity, as probed by AQP2's urea permeability, was greatly enhanced in oocytes that were coinjected with cRNAs of SNARE components (snapin+syntaxin-3+SNAP23) over those injected with AQP2 cRNA alone. It was not enhanced when syntaxin-3 was replaced by syntaxin-4 (snapin+syntaxin-4+SNAP23). On the other hand, the latter combination significantly enhanced the transport activity of the related AQP3 water channel while the presence of syntaxin-3 did not. This AQP-syntaxin interaction agrees with the polarity of these proteins' expression in the inner medullary collecting duct epithelium. Thus our findings suggest a selectivity of interactions between different aquaporin and syntaxin isoforms, and thus in the regulation of AQP2 and AQP3 activities in the plasma membrane. Snapin plays an important role as a linker between the water channel and the t-SNARE complex, leading to the fusion event, and the pairing with specific t-SNAREs is essential for the specificity of membrane recognition and fusion.


Author(s):  
Mikkel R. Holst ◽  
Louis Gammelgaard ◽  
Jesse Aaron ◽  
Frédéric H. Login ◽  
Sampavi Rajkumar ◽  
...  

Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse physiological processes; including hormone regulated short-term urine concentration. In the renal collecting duct, the water channel aquaporin-2 localizes to the apical plasma membrane as well as small, sub-apical vesicles. In response to stimulation with the antidiuretic hormone, arginine vasopressin, aquaporin-2 containing vesicles fuse with the plasma membrane, which increases collecting duct water reabsorption and thus, urine concentration. The nano-scale size of these vesicles has limited analysis of their 3D organization. Using a cell system combined with 3D super resolution microscopy, we provide the first direct analysis of the 3D network of aquaporin-2 containing exocytic vesicles in a cell culture system. We show that aquaporin-2 vesicles are 43 ± 3nm in diameter, a size similar to synaptic vesicles, and that one fraction of AQP2 vesicles localized with the sub-cortical F-actin layer and the other localized in between the F-actin layer and the plasma membrane. Aquaporin-2 vesicles associated with F-actin and this association was enhanced in a serine 256 phospho-mimic of aquaporin-2, whose phosphorylation is a key event in antidiuretic hormone-mediated aquaporin-2 vesicle exocytosis.


1990 ◽  
Vol 111 (2) ◽  
pp. 379-389 ◽  
Author(s):  
W I Lencer ◽  
A S Verkman ◽  
M A Arnaout ◽  
D A Ausiello ◽  
D Brown

The water permeability of the kidney collecting duct epithelium is regulated by vasopressin (VP)-induced recycling of water channels between an intracellular vesicular compartment and the plasma membrane of principal cells. To test whether the water channels pass through an acidic endosomal compartment during the endocytic portion of this pathway, we measured ATP-dependent acidification of FITC-dextran-labeled endosomes in isolated microsomal fractions from different regions of Brattleboro rat kidneys. Both VP-deficient controls and rat treated with exogenous VP were examined. ATP-dependent acidification was not detectable in endosomes containing water channels from distal papilla (osmotic water permeability Pf = 0.038 +/- 0.004 cm/s). In contrast, the addition of ATP resulted in a strong acidification of renal cortical endosomes (pHmin = 5.8, initial rate = 0.18-0.25 pH U/s). Acidification of cortical endosomes was reversed with nigericin and strongly inhibited by N-ethyl-maleimide. Passive proton permeability was similar and low in both cortical and papillary endosomes from rats treated or not treated with VP. The fraction of labeled endosomes present in microsomal preparations was determined by fluorescence imaging microscopy of microsomes nonspecifically bound to poly-l-lysine-coated coverslips and was 25% in cortical preparations compared to 14% (+VP) and 9% (-VP) in papillary preparations. The fraction of cortical endosomes was enriched 1.5-fold by immunoabsorption to coverslips coated with mAbs against the bovine vacuolar proton pump. In contrast, the fraction of papillary endosomes was depleted more than twofold by immunoabsorption to identical coverslips. Finally, sections of distal papilla stained with antibodies against the lysosomal glycoprotein LGP120 showed that most of the entrapped FITC-dextran did not colocalize with this lysosomal protein. These results demonstrate that vesicles which internalize water channels in kidney collecting duct principal cells lack functional proton pumps, and do not deliver the bulk of their FITC-dextran content to lysosomes. The data suggest that the principal cell contains a specialized nonacidic apical endocytic compartment which functions primarily to recycle membrane components, including water channels, to the plasma membrane.


2010 ◽  
Vol 298 (2) ◽  
pp. F266-F278 ◽  
Author(s):  
G. Procino ◽  
C. Barbieri ◽  
M. Carmosino ◽  
F. Rizzo ◽  
G. Valenti ◽  
...  

Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.


1983 ◽  
Vol 245 (6) ◽  
pp. F670-F679 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The collecting duct of the mammalian kidney is involved in urine acidification. Recent studies in the turtle bladder suggest that hydrogen ion secretion in response to elevated CO2 is regulated by insertion of hydrogen pumps into the luminal membrane of the mitochondria-rich cells. Because intercalated cells of the collecting duct are structurally similar to mitochondria-rich cells of the amphibian bladder, we studied the rat outer medullary collecting duct (OMCD) during respiratory acidosis to determine whether changes compatible with hydrogen ion secretion occur in the intercalated cells. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. After collection of physiologic data, the kidneys were fixed by in vivo perfusion and processed for electron microscopy. No changes were observed in the principal cells of the OMCD. Morphometric analysis revealed a significant increase in the surface density of the apical plasma membrane and a decrease in the number of tubulovesicular profiles in the apical region of the intercalated cells throughout the OMCD with respiratory acidosis. There were no changes in surface density of the basolateral membrane. These findings suggest that in response to respiratory acidosis there is transport of membrane from the tubulovesicular membrane compartment to the apical plasma membrane of the intercalated cells.


Sign in / Sign up

Export Citation Format

Share Document