Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney

1995 ◽  
Vol 268 (6) ◽  
pp. F1023-F1037 ◽  
Author(s):  
S. Nielsen ◽  
T. Pallone ◽  
B. L. Smith ◽  
E. I. Christensen ◽  
P. Agre ◽  
...  

The localization of aquaporin-1 water channels (AQP-1) in nephron and vascular structures in rat kidney were characterized, because vascular bundles are known to play a key role in urinary concentration. Immunohistochemistry and immunoelectron microscopy were applied on thin cryosections or ultrathin Lowicryl sections, using an optimized freeze-substitution method. Within the vascular bundles, AQP-1 is localized in descending thin limbs (DTL) of short nephrons in apical and basolateral membranes. The expression in DTL of short nephrons is considerably lower compared with the expression in long nephrons, consistent with the known lower osmotic water permeability of this segment. Furthermore, DTL of short nephrons expressing AQP-1 continue abruptly into a thin limb segment without AQP-1. This suggests the existence of a novel thin limb epithelium in the outer medulla. Extensive expression of AQP-1 is observed in apical and basolateral membranes of DTL of long nephrons, which are localized in the periphery of the vascular bundles. The expression decreases along the axis of long nephron DTLs in correlation with the known water permeability characteristics of thin limb segments. DTLs of both short and long nephrons continue abruptly into thin limb segments without AQP-1 expression, revealing an abrupt cell-to-cell transition. In vasa recta, AQP-1 is selectively localized in the nonfenestrated endothelium of descending vasa recta, whereas the fenestrated endothelium of ascending vesa recta and peritubular capillaries do not express AQP-1. AQP-1 is localized in both apical and basolateral plasma membranes, which is logical for transendothelial water transport. Isolated perfused descending vasa recta display high water permeability, and, unlike sodium permeability, diffusional water permeability is partly inhibited by mercurials, thus substantiating the presence of mercurial-sensitive water channels in descending vasa recta. Thus AQP-1 is localized in DTL and descending vasa recta within vascular bundles, and AQP-1 expression in DTL segments is in exact concordance with the known water permeability characteristics, strongly supporting that AQP-1 is the major constitutive water channel of the nephron.

2012 ◽  
Vol 302 (5) ◽  
pp. F591-F605 ◽  
Author(s):  
Anita T. Layton ◽  
William H. Dantzler ◽  
Thomas L. Pannabecker

We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na+ or urea-Cl− cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na+ or urea- Cl− cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.


2005 ◽  
Vol 288 (4) ◽  
pp. F694-F702 ◽  
Author(s):  
Ki-Hwan Han ◽  
Jung-Mi Lim ◽  
Wan-Young Kim ◽  
Hyang Kim ◽  
Kirsten M. Madsen ◽  
...  

Endothelium-derived nitric oxide (NO) is synthesized within the developing kidney and may play a crucial role in the regulation of renal hemodynamics. The purpose of this study was to establish the expression and intrarenal localization of the NO-synthesizing enzyme endothelial NO synthase (eNOS) during kidney development. Rat kidneys from 14 ( E14)-, 16 ( E16)-, 18 ( E18)-, and 20-day-old ( E20) fetuses and 1 ( P1)-, 3 ( P3)-, 7 ( P7)-, 14 ( P14)-, and 21-day-old ( P21) pups were processed for immunocytochemical and immunoblot analysis. In fetal kidneys, expression of eNOS was first observed in the endothelial cells of the undifferentiated intrarenal capillary network at E14. At E16, strong eNOS immunoreactivity was observed in the endothelial cells of renal vesicles, S-shaped bodies (stage II glomeruli), and stage III glomeruli at the corticomedullary junction. At E18- 20, early-stage developing glomeruli located in the subcapsular region showed less strong eNOS immunoreactivity than those of E16. The eNOS-positive immature glomeruli were observed in the nephrogenic zone until 7 days after birth. In fetal kidneys, eNOS was also expressed in the medulla in the endothelial cells of the capillaries surrounding medullary collecting ducts. After birth, eNOS immunostaining gradually increased in the developing vascular bundles and peritubular capillaries in the medulla and was highest at P21. Surprisingly, eNOS was also expressed in proximal tubules, in the endocytic vacuolar apparatus, only at P1. The strong expression of eNOS in the early stages of developing glomeruli and vasculature suggests that eNOS may play a role in regulating renal hemodynamics of the immature kidney.


1992 ◽  
Vol 263 (6) ◽  
pp. C1225-C1233 ◽  
Author(s):  
I. Sabolic ◽  
G. Valenti ◽  
J. M. Verbavatz ◽  
A. N. Van Hoek ◽  
A. S. Verkman ◽  
...  

CHIP28 is an integral membrane protein that has been identified as the erythrocyte water channel and that is also expressed in the kidney. Antibodies against erythrocyte CHIP28 were used to localize this protein along the rat urinary tubule. By Western blotting, CHIP28 was detected in kidney plasma membrane and endosome fractions. With the use of immunocytochemistry, CHIP28 was located in brush-border and basolateral plasma membranes of the proximal tubule. The initial S1 segment was weakly stained, but the S2 and S3 segments were heavily labeled. Subapical vesicles were also positive. Apical and basolateral membranes of the long thin descending limb were strongly labeled, but ascending thin and thick limbs of Henle and distal convoluted tubules were negative. Some vasa recta profiles in the medulla were positive. CHIP28 is, therefore, present in membranes with a high constitutive water permeability, where it probably acts as a transmembrane water-conducting channel. Finally, a weak staining of apical and basolateral membranes of cortical collecting duct principal cells was detectable, suggesting a potential relationship of CHIP28 to the vasopressin-sensitive water channel.


2006 ◽  
Vol 290 (6) ◽  
pp. F1355-F1366 ◽  
Author(s):  
Thomas L. Pannabecker ◽  
William H. Dantzler

The manner in which vasa recta function and contribute to the concentrating mechanism depends on their three-dimensional relationships to each other and to tubular elements. We have examined the three-dimensional architecture of vasculature relative to tubular structures in the central region of rat kidney inner medulla from the base through the first 3 mm by combining immunohistochemistry and semiautomated image acquisition techniques with graphical modeling software. Segments of descending vasa recta (DVR), ascending vasa recta (AVR), descending thin limb (DTL), ascending thin limb (ATL), and collecting duct (CD) were identified with antibodies against segment-specific proteins associated with solute and water transport (urea channel B, PV-1, aquaporin-1, ClC-K1, aquaporin-2, respectively) by immunofluorescence. Results indicate: 1) DVR, like DTLs, are excluded from CD clusters that we have previously shown to be the organizing element for the inner medulla; 2) AVR, like ATLs, are nearly uniformly distributed transversely across the entire inner medulla outside of and within CD clusters; 3) DVR and AVR outside CD clusters appear to be sufficiently juxtaposed to permit good countercurrent exchange; 4) within CD clusters, about four AVR closely abut each CD, surrounding it in a highly symmetrical fashion; and 5) AVR abutting each CD and ATLs within CD clusters form repeating nodal interstitial spaces bordered by a CD on one side, one or more ATLs on the opposite side, and one AVR on each of the other two sides. These relationships may be highly significant for both establishing and maintaining the inner medullary osmotic gradient.


1997 ◽  
Vol 272 (5) ◽  
pp. F587-F596 ◽  
Author(s):  
T. L. Pallone ◽  
B. K. Kishore ◽  
S. Nielsen ◽  
P. Agre ◽  
M. A. Knepper

Outer medullary descending vasa recta (OMDVR) were perfused in vitro, and volume efflux was measured by driving water movement with transmural gradients of NaCl or albumin. Consistent with mediation by water channels, p-chloromercuribenzenesulfonic acid (pCMBS) markedly inhibited volume flux induced by NaCl. Dithiothreitol reversed the inhibition, pCMBS did not significantly alter water flux induced by albumin. Osmotic water permeability (Pf) of the pCMBS-sensitive pathway of glutaraldehyde-fixed and nonfixed OMDVR was 1,102 +/- 449 and 1,257 +/- 718 microns/s (means +/- SD), respectively. pCMBS reduced Pf to near zero, whereas diffusional water permeability in the same vessels was only slightly inhibited. Immunoreactive aquaporin-1 (AQP1) measured by enzyme-linked immunosorbent assay in collagenase-treated and untreated OMDVR was 5.2 +/- 1.0 and 4.2 +/- 0.4 fmol/mm, respectively, values that account well for the experimental Pf. We conclude that OMDVR water flux driven by NaCl gradients is most likely mediated by the AQP1 water channel and that NaCl and urea gradients drive water efflux in vivo by this route.


1999 ◽  
Vol 276 (4) ◽  
pp. F498-F509 ◽  
Author(s):  
Jin Kim ◽  
Wan-Young Kim ◽  
Ki-Hwan Han ◽  
Mark A. Knepper ◽  
Søren Nielsen ◽  
...  

Aquaporin 1 (AQP-1) is a water channel protein that is constitutively expressed in renal proximal tubule and descending thin limb cells as well as in endothelial cells of the descending vasa recta. Studies in the developing rat kidney have demonstrated that AQP-1 is expressed in renal tubules before birth. However, nothing is known about the expression of AQP-1 in the renal vasculature during kidney development. The purpose of this study was to establish the distribution of AQP-1 in the renal vasculature of the developing rat kidney and follow the differentiation of the vascular system during kidney development. Kidneys from 16-, 17-, 18-, and 20-day-old fetuses and 1-, 4-, 7-, 14-, 21-, and 28-day-old pups were preserved and processed for immunohistochemical studies using a preembedding immunoperoxidase procedure. AQP-1 immunoreactivity was detected using affinity-purified rabbit polyclonal antibodies to AQP-1. AQP-1 was expressed throughout the arterial portion of the renal vasculature of the fetal and neonatal kidney from gestational age 17 days to 1 wk after birth. AQP-1 immunoreactivity gradually disappeared from the renal vasculature between 1 and 2 wk of age and remained only in the descending vasa recta. In contrast, AQP-1 immunoreactivity was not observed in lymphatic vessels until 3 wk of age and persisted in the adult kidney. AQP-1 was also expressed in a population of interstitial cells in the terminal part of the renal papilla at 3 wk of age as well as in the adult kidney. The transient expression of AQP-1 in the arterial portion of the renal vasculature in the developing rat kidney suggests that AQP-1 is important for fluid equilibrium and/or drainage in the developing kidney or, alternatively, plays a role in the regulation of growth and/or branching of the vascular tree during kidney development.


1989 ◽  
Vol 257 (4) ◽  
pp. F669-F675 ◽  
Author(s):  
R. Green ◽  
G. Giebisch

Simultaneous microperfusion of proximal tubules and peritubular capillaries in kidneys of rats anesthetized with Inactin was used to measure reabsorption of fluid in response to an imposed osmotic gradient. The tubular fluid was isotonic and the peritubular capillaries were made hypertonic with NaCl or NaHCO3. Mean gradients and ionic fluxes were measured. When no gradient was imposed tubular fluid became hypotonic and rate of fluid reabsorption was 0.700 nl.mm-1.min-1. Imposition of a 25 mM NaCl gradient increased fluid flux to 3.887 nl.mm-1.min-1, whereas 25 mM NaHCO3 stimulated 5.226 ml/mm fluid reabsorption. This gave a relative reflection coefficient of NaCl:NaHCO3 of 0.73. Apparent water permeability varied with highest values for the smallest gradients. This suggests the possibility of a compartment in the epithelium that is hypertonic to the peritubular capillaries. The hypertonicity required to account for fluid movement was 6-16 mosmol/kg.


2001 ◽  
Vol 12 (7) ◽  
pp. 1410-1421
Author(s):  
JUNG-HO CHA ◽  
YOUNG-HEE KIM ◽  
JU-YOUNG JUNG ◽  
KI-HWAN HAN ◽  
KIRSTEN M. MADSEN ◽  
...  

Abstract. In the developing rat kidney, there is no separation of the medulla into an outer and inner zone. At the time of birth, ascending limbs with immature distal tubule epithelium are present throughout the renal medulla, all loops of Henle resemble the short loop of adult animals, and there are no ascending thin limbs. It was demonstrated previously that immature thick ascending limbs in the renal papilla are transformed into ascending thin limbs by apoptotic deletion of cells and transformation of the remaining cells into a thin squamous epithelium. However, it is not known whether this is the only source of ascending thin limb cells or whether cell proliferation occurs in the segment undergoing transformation. This study was designed to address these questions and to identify sites of cell proliferation in the loop of Henle. Rat pups, 1, 3, 5, 7, and 14 d old, received a single injection of 5-bromo-2′-deoxyuridine (BrdU) 18 h before preservation of kidneys for immunohistochemistry. Thick ascending and descending limbs were identified by labeling with antibodies against the serotonin receptor, 5-HT1A, and aquaporin-1, respectively. Proliferating cells were identified with an antibody against BrdU. BrdU-positive cells in descending and ascending limbs of the loop of Henle were counted and expressed as percentages of the total number of aquaporin-1—positive and 5-HT1A—positive cells in the different segments. In the developing kidney, numerous BrdU-positive nuclei were observed in the nephrogenic zone. Outside of this location, BrdU-positive tubule cells were most prevalent in medullary rays in the inner cortex and in the outer medulla. BrdU-labeled cells were rare in the papillary portion of the loop of Henle and were not observed in the lower half of the papilla after 3 d of age. BrdU-labeled nuclei were not observed in segments undergoing transformation or in newly formed ascending thin limb epithelium. It was concluded that the growth zone for the loop of Henle is located around the corticomedullary junction, and the ascending thin limb is mainly, if not exclusively, derived from cells of the thick ascending limb.


2002 ◽  
Vol 282 (3) ◽  
pp. F553-F557 ◽  
Author(s):  
Raymond Mejia ◽  
James B. Wade

We utilized immunofluorescent immunolabeling of renal tissue sections to identify and count tubules at specified depths of the rat renal inner medulla. We used primary antibodies to aquaporin-1 (AQP1; labeling thin descending limbs), aquaporin-2 (AQP2; labeling inner medullary collecting ducts), the rat kidney-specific chloride channel (ClC-K1; labeling thin ascending limbs), and von Willebrand factor (labeling descending vasa recta). Secondary antibodies conjugated to different fluorophores were used, giving up to a three-color display. Labeled structures were then identified and counted. At each level sampled in the inner medulla, many more thin limbs were labeled by ClC-K1 than AQP1. In addition, thin limbs were found to label with antibodies to ClC-K1 on both sides of their hairpin turns. We conclude that the descending thin limbs shift from expressing AQP1 to expressing ClC-K1 some distance before the point where they turn and begin to ascend. Mathematical models can use our quantitative data to explore implications for the urine-concentrating mechanism.


2005 ◽  
Vol 289 (6) ◽  
pp. F1367-F1381 ◽  
Author(s):  
Anita T. Layton ◽  
Harold E. Layton

In a companion study (Layton AT and Layton HE. Am J Physiol Renal Physiol 289: F1346–F1366, 2005), a region-based mathematical model was formulated for the urine concentrating mechanism (UCM) in the outer medulla (OM) of the rat kidney. In the present study, we quantified the sensitivity of that model to several structural assumptions, including the degree of regionalization and the degree of inclusion of short descending limbs (SDLs) in the vascular bundles of the inner stripe (IS). Also, we quantified model sensitivity to several parameters that have not been well characterized in the experimental literature, including boundary conditions, short vasa recta distribution, and ascending vasa recta (AVR) solute permeabilities. These studies indicate that regionalization elevates the osmolality of the fluid delivered into the inner medulla via the collecting ducts; that model predictions are not significantly sensitive to boundary conditions; and that short vasa recta distribution and AVR permeabilities significantly impact concentrating capability. Moreover, we investigated, in the context of the UCM, the functional significance of several aspects of tubular segmentation and heterogeneity: SDL segments in the IS that are likely to be impermeable to water but highly permeable to urea; a prebend segment of SDLs that may be functionally like thick ascending limb (TAL); differing IS and outer stripe Na+ active transport rates in TAL; and potential active urea secretion into the proximal straight tubules. Model calculations predict that these aspects of tubular of segmentation and heterogeneity generally enhance solute cycling or promote effective UCM function.


Sign in / Sign up

Export Citation Format

Share Document