Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

1995 ◽  
Vol 269 (4) ◽  
pp. F581-F593 ◽  
Author(s):  
R. Feldberg ◽  
M. Colding-Jorgensen ◽  
N. H. Holstein-Rathlou

The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model of the afferent arteriole is based on in vivo measurements of the stress-strain relation in muscle strips. Analysis of experimental data shows that the myogenic response can be modeled by a linear relation between the transmural pressure and the level of activation of the vascular smooth muscle cells. The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal segments of the microvasculature would not be able to achieve autoregulation because of passive, pressure-mediated effects in the upstream vascular segments. In addition, it is shown that a strong myogenic response may lead to both propagation and enhancement of vascular effects mediated through mechanisms located in the distal part of the afferent arteriole. An ascending myogenic response could enhance the regulatory efficiency of the TGF mechanism by increasing the open-loop gain of the system. However, such a synergistic interaction will only be observed when the two mechanisms operate on more or less separate segments of the afferent arteriole. In the case where they operate on common segments of the arteriole, the outcome of the interaction may well be antagonistic.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sumit R Monu ◽  
Mani Maheshwari ◽  
Hong Wang ◽  
Ed Peterson ◽  
Oscar Carretero

In obesity, renal damage is caused by increase in renal blood flow (RBF), glomerular capillary pressure (P GC ), and single nephron glomerular filtration rate but the mechanism behind this alteration in renal hemodynamics is unclear. P GC is controlled mainly by the afferent arteriole (Af-Art) resistance. Af-Art resistance is regulated by mechanism similar to that in other arterioles and in addition, it is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to an increase in sodium chloride (NaCl) in the macula densa, via sodium–potassium-2-chloride cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation and is mediated by connecting tubule via epithelial sodium channel (ENaC). CTGF is blocked by the ENaC inhibitor benzamil. Attenuation of TGF reduces Af-Art resistance and allows systemic pressure to get transmitted to the glomerulus that causes glomerular barotrauma/damage. In the current study, we tested the hypothesis that TGF is attenuated in obesity and that CTGF contributes to this effect. We used Zucker obese rats (ZOR) while Zucker lean rats (ZLR) served as controls. We performed in-vivo renal micropuncture of individual rat nephrons while measuring stop-flow pressure (P SF ), an index of P GC. TGF response was measured as a decrease in P SF induced by changing the rate of late proximal perfusion from 0 to 40nl/min in stepwise manner.CTGF was calculated as the difference of P SF value between vehicle and benzamil treatment, at each perfusion rate. Maximal TGF response was significantly less in ZOR (6.16 ± 0.52 mmHg) when compared to the ZLR (8.35 ± 1.00mmHg), p<0.05 , indicating TGF resetting in the ZOR. CTGF was significantly higher in ZOR (6.33±1.95 mmHg) when compared to ZLR (1.38±0.89 mmHg), p<0.05 . When CTGF was inhibited with the ENaC blocker Benzamil (1μM), maximum P SF decrease was 12.30±1.72 mmHg in ZOR and 10.60 ± 1.73 mmHg in ZLR, indicating that blockade of CTGF restored TGF response in ZOR. These observations led us to conclude that TGF is reset in ZOR and that enhanced CTGF contributes to this effect. Increase in CTGF may explain higher renal blood flow, increased P GC and higher glomerular damage in obesity.


1999 ◽  
Vol 276 (3) ◽  
pp. F442-F449 ◽  
Author(s):  
Armin Just ◽  
Heimo Ehmke ◽  
Uwe Wittmann ◽  
Hartmut R. Kirchheim

The aim of this study was to investigate the influence of the mean level and phasic modulation of NO on the dynamic autoregulation of renal blood flow (RBF). Transfer functions were calculated from spontaneous fluctuations of RBF and arterial pressure (AP) in conscious resting dogs for 2 h under control conditions, after NO synthase (NOS) inhibition [ N G-nitro-l-arginine methyl ester hydrochloride (l-NAME)] and afterl-NAME followed by a continuous infusion of an NO donor [ S-nitroso- N-acetyl-dl-penicillamine (SNAP)]. After l-NAME ( n = 7) AP was elevated, heart rate (HR) and RBF were reduced. The gain of the transfer function above 0.08 Hz was increased, compatible with enhanced resonance of the myogenic response. A peak of high gain around 0.03 Hz, reflecting oscillations of the tubuloglomerular feedback (TGF), was not affected. The gain below 0.01 Hz, was elevated, but still less than 0 dB, indicating diminished but not abolished autoregulation. Afterl-NAME and SNAP ( n = 5), mean AP and RBF were not changed, but HR was slightly elevated. The gain above 0.08 Hz and the peak of high gain at 0.03 Hz were not affected. The gain below 0.01 Hz was elevated, but smaller than 0 dB. It is concluded that NO may help to prevent resonance of the myogenic response depending on the mean level of NO. The feedback oscillations of the TGF are not affected by NO. NO contributes to the autoregulation below 0.01 Hz due to phasic modulation independent of its mean level.


2003 ◽  
Vol 285 (4) ◽  
pp. F758-F764 ◽  
Author(s):  
T. Wronski ◽  
E. Seeliger ◽  
P. B. Persson ◽  
C. Forner ◽  
C. Fichtner ◽  
...  

Response of renal vasculature to changes in renal perfusion pressure (RPP) involves mechanisms with different frequency characteristics. Autoregulation of renal blood flow (RBF) is mediated by the rapid myogenic response, by the slower tubuloglomerular feedback (TGF) mechanism, and, possibly, by an even slower third mechanism. To evaluate the individual contribution of these mechanisms to RBF autoregulation, we analyzed the response of RBF to a step increase in RPP. In anesthetized rats, the suprarenal aorta was occluded for 30 s, and then the occlusion was released to induce a step increase in RPP. Three dampened oscillations were observed; their oscillation periods ranged from 9.5 to 13 s, from 34.2 to 38.6 s, and from 100.5 to 132.2 s, respectively. The two faster oscillations correspond with previously reported data on the myogenic mechanism and the TGF. In accordance, after furosemide, the amplitude of the intermediate oscillation was significantly reduced. Inhibition of nitric oxide synthesis by Nω-nitro-l-arginine methyl ester significantly increased the amplitude of the 10-s oscillation. It is concluded that the parameters of the dampened oscillations induced by the step increase in RPP reflect properties of autoregulatory mechanisms. The oscillation period characterizes the individual mechanism, the dampening is a measure for the stability of the regulation, and the square of the amplitudes characterizes the power of the respective mechanism. In addition to the myogenic response and the TGF, a third rather slow mechanism of RBF autoregulation exists.


2007 ◽  
Vol 293 (5) ◽  
pp. F1489-F1500 ◽  
Author(s):  
Armin Just ◽  
William J. Arendshorst

Autoregulation of renal blood flow (RBF) is mediated by a fast myogenic response (MR; ∼5 s), a slower tubuloglomerular feedback (TGF; ∼25 s), and potentially additional mechanisms. A1 adenosine receptors (A1AR) mediate TGF in superficial nephrons and contribute to overall autoregulation, but the impact on the other autoregulatory mechanisms is unknown. We studied dynamic autoregulatory responses of RBF to rapid step increases of renal artery pressure in mice. MR was estimated from autoregulation within the first 5 s, TGF from that at 5–25 s, and a third mechanism from 25–100 s. Genetic deficiency of A1AR (A1AR−/−) reduced autoregulation at 5–25 s by 50%, indicating a residual fourth mechanism resembling TGF kinetics but independent of A1AR. MR and third mechanism were unaltered in A1AR−/−. Autoregulation in A1AR−/− was faster at 5–25 than at 25–100 s suggesting two separate mechanisms. Furosemide in wild-type mice (WT) eliminated the third mechanism and enhanced MR, indicating TGF-MR interaction. In A1AR−/−, furosemide did not further impair autoregulation at 5–25 s, but eliminated the third mechanism and enhanced MR. The resulting time course was the same as during furosemide in WT, indicating that A1AR do not affect autoregulation during furosemide inhibition of TGF. We conclude that at least one novel mechanism complements MR and TGF in RBF autoregulation, that is slower than MR and TGF and sensitive to furosemide, but not mediated by A1AR. A fourth mechanism with kinetics similar to TGF but independent of A1AR and furosemide might also contribute. A1AR mediate classical TGF but not TGF-MR interaction.


2009 ◽  
Vol 20 (7) ◽  
pp. 1577-1585 ◽  
Author(s):  
Armin Just ◽  
Lisa Kurtz ◽  
Cor de Wit ◽  
Charlotte Wagner ◽  
Armin Kurtz ◽  
...  

2002 ◽  
Vol 282 (1) ◽  
pp. F51-F58 ◽  
Author(s):  
Silene L. S. Pires ◽  
Claude Julien ◽  
Bruno Chapuis ◽  
Jean Sassard ◽  
Christian Barrès

These experiments examined whether the conscious sinoaortic baroreceptor-denervated (SAD) rat, owing to its high spontaneous arterial pressure (AP) variability, might represent a model for renal blood flow (RBF) autoregulation studies. In eight SAD and six baroreceptor-intact rats, AP and RBF were recorded (1-h periods) before and after furosemide (10 mg/kg followed by 10 mg · kg−1 · h−1 iv)administration. In control conditions, AP variability was markedly enhanced in SAD rats (coefficient of variation: 16.0 ± 1.2 vs. 5.4 ± 0.5% in intact rats), whereas RBF variability was only slightly increased (8.7 ± 0.6 vs. 6.1 ± 0.5% in intact rats), suggesting buffering by autoregulatory mechanisms. In SAD rats, but not in intact rats, the AP-RBF relationships could be modeled with a four-parameter sigmoid Weibull equation ( r 2 = 0.24 ± 0.07, 3,600 data pairs/rat), allowing for estimation of an autoregulatory plateau (10.1 ± 0.7 ml/min) and a lower limit of RBF autoregulation (PLL = 93 ± 6 mmHg, defined as AP at RBF 5% below the plateau). After furosemide treatment, autoregulation curves ( r 2 = 0.49 ± 0.07) in SAD rats were shifted downward (plateau = 8.6 ± 0.8 ml/min) and rightward (PLL = 102 ± 5 mmHg). In five of six intact rats, PLL became measurable (104 ± 1 mmHg), albeit with limited accuracy ( r 2 = 0.09 ± 0.03). In conclusion, the conscious SAD rat offers the possibility of describing RBF autoregulation curves under dynamic, unforced conditions. The tubuloglomerular feedback and myogenic mechanisms cooperate in setting PLL and thus in stabilizing RBF during spontaneous depressor episodes.


Hypertension ◽  
2020 ◽  
Vol 75 (2) ◽  
pp. 405-412 ◽  
Author(s):  
Jin Wei ◽  
Jinxiu Zhu ◽  
Jie Zhang ◽  
Shan Jiang ◽  
Larry Qu ◽  
...  

Impaired renal autoregulation permits more transmission of disturbance in systemic blood pressure, which initiates barotrauma in intrarenal microvasculatures such as glomerular and tubulointerstitial capillaries, contributing to the development of kidney damage and deterioration in renal function, especially under the conditions with high blood pressure. Although it has been postulated that autoregulatory efficiency is attenuated in the aging kidney, direct evidence remains lacking. In the present study, we measured the autoregulation of renal blood flow, myogenic response of afferent arteriole (Af-Art), tubuloglomerular feedback in vivo with micropuncture, as well as tubuloglomerular feedback in vitro in isolated perfused juxtaglomerular apparatus in young and aged C57BL/6 mice. We found that renal blood flow was not significantly changed in response to a defined elevation of renal arterial pressure in young mice but significantly increased in aged mice. Additionally, myogenic response of Af-Art measured by microperfusion with a stepwise increase in perfusion pressure was significantly blunted in the aging kidney, which is associated with the attenuation of intraluminal pressure-induced intracellular calcium increases, as well as the reduced expression of integrin α5 (Itga5) in Af-Art. Moreover, both tubuloglomerular feedback in vivo and in vitro were nearly inactive in the aging kidney, which is associated with the significantly reduced expression of adenosine A1 receptor (A1AR) and suppressed vasoconstrictor response to adenosine in Af-Art. In conclusion, this study demonstrates that aging impairs renal autoregulation with blunted myogenic response and inhibited tubuloglomerular feedback response. The underlying mechanisms involve the downregulations of integrin α5 and A1AR in the Af-Art.


2014 ◽  
Vol 306 (6) ◽  
pp. R411-R419 ◽  
Author(s):  
Aso Saeed ◽  
Gerald F. DiBona ◽  
Elisabeth Grimberg ◽  
Lisa Nguy ◽  
Minne Line Nedergaard Mikkelsen ◽  
...  

This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06–0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. −4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.


2001 ◽  
Vol 280 (6) ◽  
pp. F1062-F1071 ◽  
Author(s):  
Armin Just ◽  
Heimo Ehmke ◽  
Lira Toktomambetova ◽  
Hartmut R. Kirchheim

The time course of the autoregulatory response of renal blood flow (RBF) to a step increase in renal arterial pressure (RAP) was studied in conscious dogs. After RAP was reduced to 50 mmHg for 60 s, renal vascular resistance (RVR) decreased by 50%. When RAP was suddenly increased again, RVR returned to baseline with a characteristic time course (control; n = 15): within the first 10 s, it rose rapidly to 70% of baseline ( response 1), thus already comprising 40% of the total RVR response. Thereafter, it increased at a much slower rate until it started to rise rapidly again at 20–30 s after the pressure step ( response 2). After passing an overshoot of 117% at 43 s, RVR returned to baseline values. Similar responses were observed after RAP reduction for 5 min or after complete occlusions for 60 s. When tubuloglomerular feedback (TGF) was inhibited by furosemide (40 mg iv, n = 12), response 1 was enhanced, providing 60% of the total response, whereas response 2 was completely abolished. Instead, RVR slowly rose to reach the baseline at 60 s ( response 3). The same pattern was observed when furosemide was given at a much higher dose (>600 mg iv; n = 6) or in combination with clamping of the plasma levels of nitric oxide ( n = 6). In contrast to RVR, vascular resistance in the external iliac artery after a 60-s complete occlusion started to rise with a delay of 4 s and returned to baseline within 30 s. It is concluded that, in addition to the myogenic response and the TGF, a third regulatory mechanism significantly contributes to RBF autoregulation, independently of nitric oxide. The three mechanisms contribute about equally to resting RVR. The myogenic response is faster in the kidney than in the hindlimb.


Sign in / Sign up

Export Citation Format

Share Document