Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways

1997 ◽  
Vol 273 (2) ◽  
pp. F274-F282 ◽  
Author(s):  
J. D. Imig ◽  
P. C. Deichmann

Activation of angiotensin receptors activates phospholipase A2 (PLA2) in various tissues, resulting in the release of arachidonic acid and formation of vasoactive metabolites. The present study examined the role of the lipoxygenase and cytochrome P-450 pathways by evaluating the effects of PLA2, cyclooxygenase, lipoxygenase, and epoxygenase inhibition on the afferent arteriolar responses to angiotensin II (ANG II) and norepinephrine in the vitro perfused rat juxtamedullary nephron preparation. ANG II (0.01-100 nM) resulted in a dose-dependent afferent arteriolar vasoconstriction ranging from 3 +/- 1 to 32 +/- 2% (n = 47). Norepinephrine at 0.01, 0.1, and 1.0 microM also decreased afferent arteriolar diameter by 5 +/- 1, 17 +/- 1, and 34 +/- 2%, respectively (n = 43). In the presence of arachidonyl trifluoromethyl ketone (AACOCF3, 20 microM), a PLA2 inhibitor, afferent arteriolar vasoconstriction to ANG II (100 nM) was attenuated, and the diameter decreased by 23 +/- 4% (n = 7). The cyclooxygenase inhibitor, indomethacin (10 microM), and the cyclooxygenase-2 inhibitor, NS-398 (10 microM), did not affect the afferent arteriolar response to ANG II. The lipoxygenase inhibitor biacalein (1 microM) attenuated the afferent arteriolar response to ANG II, and vessel diameter decreased by 11 +/- 5% (n = 6) in response to 100 nM ANG II. On the other hand, miconazole (1 microM), a selective epoxygenase inhibitor, enhanced the afferent arteriolar vasoconstriction to 100 nM ANG II. 17-Octadecynoic acid (17-ODYA, 1 microM), an inhibitor of hydroxylase and epoxygenase metabolism of arachidonic acid, also increased the responsiveness of the afferent arteriole. PLA2, lipoxygenase, or cytochrome P-450 inhibition had no effect on the afferent arteriolar vasoconstriction to norepinephrine. The afferent arteriolar vasoconstrictor response to norepinephrine (0.1 microM) was enhanced by indomethacin or NS-398, and diameter decreased by 25 +/- 3% and 28 +/- 4%, respectively. Results of this study suggest that metabolites of the cyclooxygenase pathway attenuate the afferent arteriolar vasoconstrictor effect of norepinephrine. Furthermore, these data suggest that activation of PLA2 is involved in part of the afferent arteriolar response to ANG II and that metabolites of the lipoxygenase pathway augment and metabolites of the epoxygenase pathway attenuate the afferent arteriolar vasoconstrictor effect of ANG II.

1993 ◽  
Vol 264 (2) ◽  
pp. H327-H335 ◽  
Author(s):  
M. Rosolowsky ◽  
W. B. Campbell

Metabolites of arachidonic acid regulate several physiological processes, including vascular tone. The purpose of this study was to determine which metabolites of arachidonic acid are produced by bovine coronary arteries and which may regulate coronary vascular tone. Arachidonic acid induced a concentration-related, endothelium-dependent relaxation [one-half maximum effective concentration (EC50) of 2 x 10(-7) M and a maximal relaxation of 91 +/- 2% at 10(-5) M] of bovine coronary arteries that were contracted with U-46619, a thromboxane mimetic. The concentration of 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), a metabolite of prostaglandin I2 (PGI2), increased from 82 +/- 6 to 328 +/- 24 pg/ml with arachidonic acid (10(-5) M). Treatment with the cyclooxygenase inhibitor indomethacin attenuated arachidonic acid-induced relaxations by approximately 50% and blocked the synthesis of 6-keto-PGF1 alpha. PGI2 caused a concentration-related relaxation (EC50 of 10(-8) M and a maximal relaxation of 125 +/- 11% at 10(-7) M). BW755C, a cyclooxygenase and lipoxygenase inhibitor, inhibited arachidonic acid-induced relaxation to the same extent as indomethacin. When vessels were treated with both indomethacin and BW755C, the inhibition of relaxation was the same as either inhibitor alone. SKF 525a, a cytochrome P-450 inhibitor, reduced arachidonic acid-induced relaxation by approximately 50%. When SKF 525a was given in combination with indomethacin, the relaxation by arachidonic acid was almost completely inhibited. SKF 525a inhibited the synthesis of epoxyeicosatrienoic acids (EETs).(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 280 (3) ◽  
pp. H1066-H1074 ◽  
Author(s):  
Jefferson C. Frisbee ◽  
Richard J. Roman ◽  
U. Murali Krishna ◽  
John R. Falck ◽  
Julian H. Lombard

The present study determined the role of 20-hydroxyeicosatetraenoic acid [20-HETE; produced by ω-hydroxylation of arachidonic acid via cytochrome P-450 (CP450) 4A enzymes] in regulating myogenic activation of skeletal muscle resistance arteries from normotensive (NT) and hypertensive (HT) Dahl salt-sensitive (SS) rats. Gracilis arteries (GA) were isolated from each rat and viewed via television microscopy, and changes in vessel diameter with altered transmural pressure were measured with a video micrometer. Under control conditions, GA from both groups exhibited strong, endothelium-independent myogenic activation. Treatment of GA with 17-octadecynoic acid (17-ODYA; inhibitor of CP450 4A enzymes) did not alter myogenic activation in NT rats, but impaired this response in HT animals. Treatment of GA from HT rats with dibromo-dodecynyl-methylsulfimide (DDMS; inhibitor of 20-HETE production) impaired myogenic activation, as did application of 20-hydroxyeicosa-6( Z),15( Z)-dienoic acid, an antagonist for 20-HETE receptors. Application of iberiotoxin, a Ca2+-activated potassium (KCa) channel inhibitor, restored myogenic activation from HT rats treated with DDMS. These results suggest that myogenic activation of skeletal muscle resistance arteries from NT Dahl-SS rats does not depend on CP450, whereas myogenic activation of these vessels in HT Dahl-SS rats is partly a function of 20-HETE production, inhibiting KCachannels through a receptor-mediated process.


1997 ◽  
Vol 273 (1) ◽  
pp. R293-R300 ◽  
Author(s):  
A. Oyekan ◽  
M. Balazy ◽  
J. C. McGiff

In the rat isolated perfused kidney, 5,8,11,14-eicosatetraynoic acid, an inhibitor of all pathways of arachidonic acid (AA) metabolism, diminished endothelin-1 (ET-1)- and angiotensin II (ANG II)-induced renal vasoconstriction by approximately 60-70%. We then examined the individual contribution of each oxygenase, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 (CYP) to the vasoconstrictor effects of ET-1 and ANG II. Inhibition of COX with indomethacin reduced by 30-40% the vasoconstrictor responses to ET-1 and ANG II. Inhibition of 12-LOX with baicalein and 5- and 12-LOX with 5,8,11-eicosatriynoic acid attenuated ANG II-induced renal vasoconstriction by approximately 40-60% but did not affect responses to ET-1. In contrast, 12,12-dibromododec-11-enoic acid (DBDD), an inhibitor of the CYP omega/omega 1-hydroxylase pathway, diminished ET-1-induced renal vasoconstriction by 30-40%, an effect reproduced by depletion of CYP enzymes with CoCl2. Neither DBDD nor CoCl2 affected renal vasoconstriction elicited by ANG II. ET-1 increased efflux of 19- and 20-hydroxyeicosatetraenoic acid, an effect reduced by DBDD. Thus products of the COX and CYP pathways contribute to the renal vasoconstrictor response to ET-1, whereas COX- and LOX-derived eicosanoids contribute to the response to ANG II, accounting for > or = 80% of the vasoactivity of the peptides.


1987 ◽  
Vol 253 (3) ◽  
pp. H626-H633 ◽  
Author(s):  
J. U. Raj ◽  
P. Chen

To determine the role of eicosanoids in hypoxic pulmonary vasoconstriction, we studied 42 isolated, blood-perfused lamb lungs during normoxia and hypoxia. We used the lung micropuncture technique to measure microvascular pressures in 20- to 80-micron diameter arterioles and venules and estimated segmental vascular resistance. In separate experiments, lungs were untreated or treated with either indomethacin (a cyclooxygenase inhibitor), Dazmegrel (a thromboxane synthetase inhibitor), SQ 29548 (a thromboxane receptor blocker), FPL 57231 (a leukotriene receptor blocker), or U 60257 (a 5'lipoxygenase inhibitor). In control untreated lungs both pulmonary arteries and veins constricted during hypoxia. Addition of indomethacin, Dazmegrel, or SQ 29548 to the perfusate resulted in abolition of venous constriction during hypoxia but enhancement of arterial constriction. FPL 57231 or U 60257 resulted in complete abolition of the pulmonary hypoxic vasoconstrictor response. Our results indicate that during hypoxia, leukotrienes mediate arterial and venous constriction with thromboxane A2 being necessary for venous constriction. We conclude that the interaction between 5'lipoxygenase and cyclooxygenase products of arachidonic acid results in the characteristic pulmonary hypoxic vasoconstrictor response in isolated, perfused lamb lungs.


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3284-3294 ◽  
Author(s):  
Pablo G. Mele ◽  
Alejandra Duarte ◽  
Cristina Paz ◽  
Alessandro Capponi ◽  
Ernesto J. Podestá

Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.


1996 ◽  
Vol 271 (1) ◽  
pp. F87-F93 ◽  
Author(s):  
J. D. Imig ◽  
L. G. Navar

Arachidonic acid (AA) metabolites have been implicated in the control of renal hemodynamics, but the nature of the metabolites produced by renal cells when AA is released has remained uncertain. Experiments were performed using the in vitro perfused juxtamedullary nephron preparation to examine the effects of perfusion and superfusion of AA on the renal microvasculature. Extraluminal exposure of the vessels by superfusion with solutions containing 0.1, 1.0, and 10 microM AA decreased afferent arteriolar diameter by 8 +/- 2, 16 +/- 3, and 20 +/- 3%, respectively. The same doses of AA added to the perfusate produced a similar afferent arteriolar vasoconstriction. Inhibition of the major enzymatic pathways unmasked differential responses of AA that were dependent on the direction from which the vasculature was exposed to AA. 17-Octadecynoic acid (1 microM), an inhibitor of the cytochrome P-450 pathway, eliminated the vasoconstrictor response to superfused AA but had little effect on the response to perfused AA. Lipoxygenase inhibition with baicalein (0.5 microM) did not alter the afferent arteriolar vasoconstriction during superfusion with AA but did attenuate the vasoconstrictor response to perfused AA by 34%. Cyclooxygenase inhibition with 10 microM indomethacin reduced the afferent arteriolar response to superfusion with 10 microM AA by 46%, but the responses to perfusion with AA were reversed, leading to the unmasking of a 17% afferent arteriolar dilation. The AA-induced vasorelaxation observed during cyclooxygenase inhibition was prevented by the subsequent addition of a P-450 inhibitor. Additionally, after endothelial removal with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), the vasodilatory response reverted to a vasoconstriction. The results of this study demonstrate that in the rat, AA metabolites exert predominant actions on afferent arterioles, but differential responses are mediated via different enzymatic pathways depending on the origin of AA. Increased AA availability of intraluminal origin leads to production of cyclooxygenase-derived vasoconstrictor metabolites and also to endothelial-derived cytochrome P-450 vasodilatory metabolites. In contrast, increased AA availability of interstitial origin leads to production of vasoconstrictor cytochrome P-450 metabolites.


1989 ◽  
Vol 570 (1 Vitamin E) ◽  
pp. 136-145 ◽  
Author(s):  
PALLU REDDANNA ◽  
JAY WHELAN ◽  
JOHN R. BURGESS ◽  
MARY L. ESKEW ◽  
GEORGE HILDENBRANDT ◽  
...  

1991 ◽  
Vol 261 (2) ◽  
pp. F273-F282 ◽  
Author(s):  
H. Weihprecht ◽  
J. N. Lorenz ◽  
J. P. Briggs ◽  
J. Schnermann

The present studies were performed to examine the vasoconstrictor effect of angiotensin II (ANG II), angiotensin III (ANG III), and vasopressin in isolated afferent arterioles of the rabbit kidney. Afferent arterioles were dissected together with their glomerulus and perfused with a pressure head of 120 cmH2O. Changes in vasomotor tone were assessed as diameter changes on videotaped recordings. Afferent arterioles responded to the angiotensins and vasopressin with dose-dependent reductions in vascular diameters with half-maximum responses being observed at concentrations between 10(-9) and 10(-8) M. Responses to ANG II and III were inhibited by saralasin. Contractile responses to ANG II and vasopressin were not altered by prior occlusion of the efferent arteriole, suggesting that afferent vasoconstriction does not represent a myogenic reaction to an increase in efferent resistance. The vasoconstrictor response to ANG II was largely eliminated by removal of the glomerulus and the distal-most portion of the afferent arteriole, whereas the response to vasopressin remained intact. Our data are consistent with the notion that the juxtaglomerular apparatus (JGA) and/or glomerulus may control proximal afferent arteriolar contractility by electrotonic or myogenic coupling mechanisms or by producing cofactors that modulate vasomotor responses.


1997 ◽  
Vol 272 (5) ◽  
pp. H2204-H2210 ◽  
Author(s):  
K. S. Lin ◽  
J. Y. Chan ◽  
S. H. Chan

We evaluated the role of endogenous angiotensin II and III (ANG II and ANG III) at the rostral nucleus reticularis ventrolateralis (NRVL) in the modulation of baroreceptor reflex (BRR) response and the subtype of angiotensin receptors involved in this process. Adult male Sprague-Dawley rats anesthetized and maintained with pentobarbital sodium were used. Exogenous application of ANG II or ANG III (10, 20, or 40 pmol) by bilateral microinjection into the NRVL significantly suppressed the BRR response to transient hypertension induced by phenylephrine (5 micrograms/kg i.v.). The suppressive effect of ANG II (20 pmol) was reversed by an equimolar dose (1.6 nmol) of its peptide antagonist, [Sar1, Ile8]ANG II, and the nonpeptide antagonists for AT1 and AT2 receptors, losartan and PD-123319, respectively. On the other hand, the inhibitory action of ANG III (20 pmol) was blunted by its peptide antagonist. [Ile7]ANG III or PD-123319, but not by losartan. Blocking the endogenous activity of the angiotensins by microinjection into the bilateral NRVL of [Sar1, Ile8]ANG II, [Ile7]ANG III, or PD-123319 elicited an appreciable enhancement of the BRR response, whereas losartan produced minimal effect. These results suggest that, under physiological conditions, both endogenous ANG II and ANG III may exert a tonic inhibitory modulation on the BRR response by acting selectively on the AT2 receptors at the NRVL.


Sign in / Sign up

Export Citation Format

Share Document