enzymatic pathways
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 51)

H-INDEX

33
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Denis K. Ng'etich ◽  
Rawlynce C. Bett ◽  
Charles K. Gachuiri ◽  
Felix M. Kibegwa

Abstract Methane is a greenhouse gas with disastrous consequences when released to intolerable levels. Ruminants produce methane during gut fermentation releasing it through belching and/or flatulence. To better understand the diversity of methanogens and functional enzymes associated with methane metabolism in dairy cows, 48 samples; six rumen and 42 dung contents were collected and analyzed using a shotgun metagenomic approach. The results indicated archaea from 5 phyla, 9 classes, 16 orders, 25 families, 59 genera, and 87 species. Gut sites significantly contributed to the presence and distribution of various methanogens (P<0.01). The class Methanomicrobia was abundant in the rumen samples (~ 39%) and in dung (~44%). The most abundant (~17%) methanogen species identified was Methanocorpusculum labreanum. However, some taxonomic classes were not classified (~ 6% in the rumen and ~4% in the dung). Furthermore, five functional enzymes: Glycine/Serine hydroxy methyltransferase, Formylmethanofuran—tetrahydromethanopterin N-formyltransferase, Formate dehydrogenase, Anaerobic carbon monoxide dehydrogenase and Catalase-peroxidase were associated with methane metabolism. KO0600 module and Enzyme Commissions (1.11.1.6 & 2.1.2.1) were common for dung and rumen fluid’s enzymatic pathways. Functional analysis for the enzymes identified were significant (P<0.05) for 5 metabolism processes. Breeding for tolerable methane emitting dairy cattle for a sustainable environment should be undertaken.


2022 ◽  
Author(s):  
Suze Ma ◽  
Dhanaraju Mandalapu ◽  
Shu Wang ◽  
Qi Zhang

This review discusses the diverse enzymatic pathways in the biosynthesis of cyclopropane, a unique structural motif with important biochemical properties.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2516
Author(s):  
Clifton L. Ricaña ◽  
Robert A. Dick

Understanding the molecular mechanisms of retroviral assembly has been a decades-long endeavor. With the recent discovery of inositol hexakisphosphate (IP6) acting as an assembly co-factor for human immunodeficiency virus (HIV), great strides have been made in retroviral research. In this review, the enzymatic pathways to synthesize and metabolize inositol phosphates (IPs) relevant to retroviral assembly are discussed. The functions of these enzymes and IPs are outlined in the context of the cellular biology important for retroviruses. Lastly, the recent advances in understanding the role of IPs in retroviral biology are surveyed.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6954
Author(s):  
Teresa Soledad Cid-Pérez ◽  
Guadalupe Virginia Nevárez-Moorillón ◽  
Carlos Enrique Ochoa-Velasco ◽  
Addí Rhode Navarro-Cruz ◽  
Paola Hernández-Carranza ◽  
...  

Saffron is derived from the stigmas of the flower Crocus sativus L. The drying process is the most important post-harvest step for converting C. sativus stigmas into saffron. The aim of this review is to evaluate saffron’s post-harvest conditions in the development of volatile compounds and its aroma descriptors. It describes saffron’s compound generation by enzymatic pathways and degradation reactions. Saffron quality is described by their metabolite’s solubility and the determination of picrocrocin, crocins, and safranal. The drying process induce various modifications in terms of color, flavor and aroma, which take place in the spice. It affects the aromatic species chemical profile. In the food industry, saffron is employed for its sensory attributes, such as coloring, related mainly to crocins (mono-glycosyl esters or di-glycosyl polyene).


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jean-Benoît Lalanne ◽  
Gene-Wei Li

Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry in living cells, but our ability to predict the optimal abundances from basic properties remains underdeveloped. Here we report a biophysical, first-principles model of growth optimization for core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved stoichiometry spanning two orders of magnitude. We show that predictions from maximization of ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the conserved ratios of translation factors. The analytical solutions, without free parameters, provide an interpretable framework for the observed hierarchy of expression levels based on simple biophysical properties, such as diffusion constants and protein sizes. Our results provide an intuitive and quantitative understanding for the construction of a central process of life, as well as a path toward rational design of pathway-specific enzyme expression stoichiometry.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4646
Author(s):  
Khashayar Ahmadmehrabi ◽  
Ali R. Haque ◽  
Ahmed Aleem ◽  
Elizabeth A. Griffiths ◽  
Gregory W. Roloff

Despite considerable growth in our understanding of the heterogeneous biology and pathogenesis of acute myeloid leukemia (AML) in recent decades, for nearly forty years, little progress was gained in the realm of novel therapeutics. Since 2017, however, nine agents have been FDA-approved for patients with AML in both the upfront and relapsed/refractory (R/R) settings. Most of these compounds function as inhibitors of key cell cycle enzymatic pathways or mediators of leukemic proliferation and survival. They have been approved both as single agents and in combination with conventional or reduced-intensity conventional chemotherapeutics. In this article, we review the molecular landscape of de novo vs. R/R AML and highlight the potential translational impact of defined molecular disease subsets. We also highlight several recent agents that have entered the therapeutic armamentarium and where they fit in the AML treatment landscape, with a focus on FLT3 inhibitors, IDH1 and IDH2 inhibitors, and venetoclax. Finally, we close with a survey of two promising novel agents under investigation that are poised to enter the mainstream clinical arena in the near future.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2301
Author(s):  
Fábio Alessandro de Freitas ◽  
Débora Levy ◽  
Amira Zarrouk ◽  
Gérard Lizard ◽  
Sérgio Paulo Bydlowski

Oxysterols are oxidized derivatives of cholesterol produced by enzymatic activity or non-enzymatic pathways (auto-oxidation). The oxidation processes lead to the synthesis of about 60 different oxysterols. Several oxysterols have physiological, pathophysiological, and pharmacological activities. The effects of oxysterols on cell death processes, especially apoptosis, autophagy, necrosis, and oxiapoptophagy, as well as their action on cell proliferation, are reviewed here. These effects, also observed in several cancer cell lines, could potentially be useful in cancer treatment. The effects of oxysterols on cell differentiation are also described. Among them, the properties of stimulating the osteogenic differentiation of mesenchymal stem cells while inhibiting adipogenic differentiation may be useful in regenerative medicine.


Author(s):  
Seth A Strom ◽  
Aaron G Hager ◽  
Jeanaflor Crystal T Concepcion ◽  
Nicholas J Seiter ◽  
Adam S Davis ◽  
...  

Abstract Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid (VLCFA)-inhibiting herbicide, S-metolachlor, in multiple-herbicide resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (~2-fold) in CHR and SIR compared to WUS, but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (&gt;20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yovanny Izquierdo ◽  
Luis Muñiz ◽  
Jorge Vicente ◽  
Satish Kulasekaran ◽  
Verónica Aguilera ◽  
...  

Plant oxylipins are signaling molecules produced from fatty acids by oxidative pathways, mainly initiated by 9- and 13-lipoxygenases (9-LOX and 13-LOX), alpha-dioxygenases or non-enzymatic oxidation. Oxylipins from the 9-LOX pathway induce oxidative stress and control root development and plant defense. These activities have been associated with mitochondrial processes, but precise cellular targets and pathways remain unknown. In order to study oxylipin signaling, we previously generated a collection of Arabidopsis thaliana mutants that were insensitive to the 9-LOX products 9(S)-hydroxy-10,12, 15-octadecatrienoic acid (9-HOT) and its ketone derivative 9-KOT (noxy mutants). Here, we describe noxy1, noxy3, noxy5, noxy23, and noxy54 mutants, all affected in nucleus-encoded mitochondrial proteins, and use them to study the role of mitochondria in oxylipin signaling. Functional and phenotypic analyses showed that noxy plants displayed mitochondrial aggregation, reduced respiration rates and resistance to the complex III inhibitor Antimycin A (AA), thus indicating a close similarity of the oxylipin signaling and mitochondrial stress. Application of 9-HOT and 9-KOT protected plants against subsequent mitochondrial stress, whereas they boosted root growth reduction when applied in combination with complex III inhibitors but did not with inhibitors of other respiratory complexes. A similar effect was caused by linear-chain oxylipins from 13-LOX or non-enzymatic pathways having α,β-unsaturated hydroxyl or keto groups in their structure. Studies to investigate 9-HOT and 9-KOT activity indicated that they do not reduce respiration rates, but their action is primarily associated with enhanced ROS responses. This was supported by the results showing that 9-HOT or 9-KOT combined with AA amplified the expression of oxylipin- and ROS-responding genes but not of the AA marker AOX1a, thus implying the activation of a specific mitochondria retrograde signaling pathway. Our results implicate mitochondrial complex III as a hub in the signaling activity of multiple oxylipin pathways and point at downstream ROS responses as components of oxylipin function.


Author(s):  
Chen Yang ◽  
Yushi Liu ◽  
Wan-Qiu Liu ◽  
Changzhu Wu ◽  
Jian Li

Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.


Sign in / Sign up

Export Citation Format

Share Document