renal microvasculature
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 1)

2020 ◽  
pp. 1-11
Author(s):  
Ewelina Kreft ◽  
Kornelia Sałaga-Zaleska ◽  
Monika Sakowicz-Burkiewicz ◽  
Kamil Dąbkowski ◽  
Miroslawa Szczepánska-Konkel ◽  
...  

Diabetes through adenosine A1 receptor (A<sub>1</sub>R) and P2 receptors (P2Rs) may lead to disturbances in renal microvasculature. We investigated the renal microvascular response to Ap<sub>4</sub>A, an agonist of P2Rs, in streptozotocin-induced diabetic rats. Using laser Doppler flowmetry, renal blood perfusion (RBP) was measured during infusion of Ap<sub>4</sub>A alone or in the presence of A<sub>1</sub>R antagonist, either DPCPX (8-cyclopentyl-1,3-dipropylxanthine) or 8-cyclopentyltheophylline (CPT). Ap<sub>4</sub>A induced a biphasic response in RBP: a phase of rapid decrease was followed by a rapid increase, which was transient in diabetic rats but extended for 30 min in nondiabetic rats. Phase of decreased RBP was not affected by DPCPX or CPT in either group. Early and extended increases in RBP were prevented by DPCPX and CPT in nondiabetic rats, while in diabetic rats, the early increase in RBP was not affected by these antagonists. A<sub>1</sub>R mRNA and protein levels were increased in isolated glomeruli of diabetic rats, but no changes were detected in P2Y<sub>1</sub>R and P2Y<sub>2</sub>R mRNA. Presence of unblocked A<sub>1</sub>R is a prerequisite for the P2R-mediated relaxing effect of Ap<sub>4</sub>A in nondiabetic conditions, but influence of A<sub>1</sub>R on P2R-mediated renal vasorelaxation is abolished under diabetic conditions.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 862
Author(s):  
Sofie Bech Andersen ◽  
Iman Taghavi ◽  
Carlos Armando Villagómez Hoyos ◽  
Stinne Byrholdt Søgaard ◽  
Fredrik Gran ◽  
...  

In vivo monitoring of the microvasculature is relevant since diseases such as diabetes, ischemia, or cancer cause microvascular impairment. Super-resolution ultrasound imaging allows in vivo examination of the microvasculature by detecting and tracking sparsely distributed intravascular microbubbles over a minute-long period. The ability to create detailed images of the renal vasculature of Sprague-Dawley rats using a modified clinical ultrasound platform was investigated in this study. Additionally, we hypothesized that early ischemic damage to the renal microcirculation could be visualized. After a baseline scan of the exposed kidney, 10 rats underwent clamping of the renal vein (n = 5) or artery (n = 5) for 45 min. The kidneys were rescanned at the onset of clamp release and after 60 min of reperfusion. Using a processing pipeline for tissue motion compensation and microbubble tracking, super-resolution images with a very high level of detail were constructed. Image filtration allowed further characterization of the vasculature by isolating specific vessels such as the ascending vasa recta with a 15–20 μm diameter. Using the super-resolution images alone, it was only possible for six assessors to consistently distinguish the healthy renal microvasculature from the microvasculature at the onset of vein clamp release. Future studies will aim at attaining quantitative estimations of alterations in the renal microvascular blood flow using super-resolution ultrasound imaging.


Author(s):  
Stinne Byrholdt Sogaard ◽  
Sofie Bech Andersen ◽  
Iman Taghavi ◽  
Carlos Armando Villagomez Hoyos ◽  
Kristoffer Lindskov Hansen ◽  
...  

2020 ◽  
Vol 9 (15) ◽  
Author(s):  
Fang‐Fei Wei ◽  
Anke Raaijmakers ◽  
Jesus D. Melgarejo ◽  
Nicholas Cauwenberghs ◽  
Lutgarde Thijs ◽  
...  

2020 ◽  
Vol 98 (2) ◽  
pp. 355-365 ◽  
Author(s):  
Qiyang Chen ◽  
Jaesok Yu ◽  
Brittney M. Rush ◽  
Sean D. Stocker ◽  
Roderick J. Tan ◽  
...  

2020 ◽  
Vol 319 (1) ◽  
pp. R87-R95
Author(s):  
Ankit Gilani ◽  
Kevin Agostinucci ◽  
Jonathan V. Pascale ◽  
Sakib Hossain ◽  
Sharath Kandhi ◽  
...  

20-Hydroxyeicosatetraenoic acid (20-HETE) has been linked to blood pressure (BP) regulation via actions on the renal microvasculature and tubules. We assessed the tubular 20-HETE contribution to hypertension by generating transgenic mice overexpressing the CYP4A12-20-HETE synthase (PT-4a12 mice) under the control of the proximal tubule (PT)-specific promoter phosphoenolpyruvate carboxykinase (PEPCK). 20-HETE levels in the kidney cortex of male (967 ± 210 vs. 249 ± 69 pg/mg protein) but not female (121 ± 15 vs. 92 ± 11 pg/mg protein) PT-4a12 mice showed a 2.5-fold increase compared with wild type (WT). Renal cortical Cyp4a12 mRNA and CYP4A12 protein in male but not female PT-4a12 mice increased by two- to threefold compared with WT. Male PT-4a12 mice displayed elevated BP (142 ± 1 vs. 111 ± 4 mmHg, P < 0.0001), whereas BP in female PT-4a12 mice was not significantly different from WT (118 ± 2 vs. 117 ± 2 mmHg; P = 0.98). In male PT-4a12 mice, BP decreased when mice were transitioned from a control-salt (0.4%) to a low-salt diet (0.075%) from 135 ± 4 to 120 ± 6 mmHg ( P < 0.01) and increased to 153 ± 5 mmHg ( P < 0.05) when mice were placed on a high-salt diet (4%). Female PT-4a12 mice did not show changes in BP on either low- or high-salt diet. In conclusion, the expression of Cyp4a12 driven by the PEPCK promoter is sex specific, probably because of its X-linkage. The salt-sensitive hypertension seen in PT-4a12 male mice suggests a potential antinatriuretic activity of 20-HETE that needs to be further explored.


2020 ◽  
pp. 353-369
Author(s):  
Z GUAN ◽  
M MAKLED ◽  
E INSCHO

Proper renal blood flow (RBF) and glomerular filtration rate (GFR) are critical for maintaining normal blood pressure, kidney function and water and electrolyte homeostasis. The renal microvasculature expresses a multitude of receptors mediating vasodilation and vasoconstriction, which can influence glomerular blood flow and capillary pressure. Despite this, RBF and GFR remain quite stable when arterial pressure fluctuates because of the autoregulatory mechanism. ATP and adenosine participate in autoregulatory control of RBF and GFR via activation of two different purinoceptor families (P1 and P2). Purinoceptors are widely expressed in renal microvasculature and tubules. Emerging data show altered purinoceptor signaling in hypertension-associated kidney injury, diabetic nephropathy, sepsis, ischemia-reperfusion induced acute kidney injury and polycystic kidney disease. In this brief review, we highlight recent studies and new insights on purinoceptors regulating renal microvascular function and renal hemodynamics. We also address the mechanisms underlying renal microvascular injury and impaired renal autoregulation, focusing on purinoceptor signaling and hypertension-induced renal microvascular dysfunction. Interested readers are directed to several excellent and comprehensive reviews that recently covered the topics of renal autoregulation, and nucleotides in kidney function under physiological and pathophysiological conditions (Inscho 2009, Navar et al. 2008, Carlstrom et al. 2015, Vallon et al. 2020).


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Connie Ow ◽  
Vijayakumar Sukumaran ◽  
Jennifer Ngo ◽  
Cheng Kun Du ◽  
Akihiro Fujiwara ◽  
...  

Abstract Background and Aims Chronic kidney disease (CKD) is an ever-growing concern and CKD associated with diabetes accounted for ∼ 35% of new cases of end-stage renal failure. Clinical trials with insulin-independent sodium-glucose co-transporter 2 (SGLT2) inhibitors not only showed significant improvements in hyperglycemia and thus renal damage, but also reduced the risk of adverse cardiovascular events. Microvessels supply local tissue oxygen demands and are important controllers of regional perfusion. Endothelial dysfunction has been posited to be an important factor driving the pathogenesis of diabetic nephropathy, largely through impaired eNOS activity and thus reduced nitric oxide bioavailability. Thus, we aim to determine the effects of SGLT2 inhibition on vasodilator function in the renal vasculature. We hypothesize that rats chronically treated with dapagliflozin, a SGLT2 inhibitor, improves renal endothelial function and the microvessels are better able to maintain perfusion in response to the inhibition of nitric oxide synthase and prostaglandin blockade. Method Male Zucker fatty diabetic rats (8 wk old), a model of type 2 diabetes, were given daily oral gavage of 1 mg/kg dapagliflozin or its vehicle for up to 22 wks of age (n=6/group). Renal excretory function, glomerular filtration rate (GFR) and indices of renal injury was assessed before treatment and after every 4 wks up until 22 wks of age. GFR was assessed via transcutaneous clearance of FITC-sinistrin. Vasodilator function of the renal microvasculature was assessed via X-ray microangiography. We conducted successive imaging of the microvessels before and during infusion of acetylcholine (ACh) and sodium nitroprusside (SNP) which facilitated the assessment of endothelium dependent and independent dilation respectively. After which, rats were given successive boluses of L-NAME and indomethacin to assess the vasodilatory function of the microvasculature independent of nitric oxide and prostaglandins respectively. These inhibitors were given under the conditions of SNP clamp which allowed for us to titrate the blood pressure to baseline levels. Lastly, we assessed the ability of endothelium hyperpolarizing factors (EDHFs) to maintain microvascular perfusion when SNP infusion ceased and an infusion of ACh commenced while still under the effects of L-NAME and indomethacin. Results As expected, dapagliflozin alleviated hyperglycemia across the treatment period. There was a tendency for dapagliflozin to ameliorate the decline of GFR, although this apparent effect was not statistically significant. Dapagliflozin did not appear to improve indices of renal injury. Treatment with dapagliflozin alleviated polyuria but did not appear to have an impact on urine osmolarity or sodium excretion. The responses (vessel diameter) of renal microvessels to ACh and SNP was greater in dapagliflozin than in vehicle fed rats. The microvessels of vehicle fed rats appeared to undergo relative constriction in response to L-NAME and indomethacin even under the effects of SNP clamp. In contrast, microvessels of dapagliflozin fed rats appeared to be relatively well-perfused after NOS and COX blockade. This suggests that dapagliflozin may improve endothelial dysfunction commonly associated with diabetic nephropathy. Following NOS and COX blockade, ACh was infused in rats to determine the status of vasodilatory function mediated by EDHFs. The microvessels in diabetic rats did not appear to be dilated after infusion of ACh, suggesting that vasodilatory effects of EDHFs on the vasculature is diminished in diabetic rats. Dapagliflozin appeared to improve this effect in that the renal microvessels were dilated even when NOS and COX production was blocked/inhibited. Conclusion Chronic treatment of dapagliflozin may improve endothelial dysfunction and thus retard the progression of diabetic nephropathy in a rat model of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document