Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles

1991 ◽  
Vol 261 (2) ◽  
pp. F273-F282 ◽  
Author(s):  
H. Weihprecht ◽  
J. N. Lorenz ◽  
J. P. Briggs ◽  
J. Schnermann

The present studies were performed to examine the vasoconstrictor effect of angiotensin II (ANG II), angiotensin III (ANG III), and vasopressin in isolated afferent arterioles of the rabbit kidney. Afferent arterioles were dissected together with their glomerulus and perfused with a pressure head of 120 cmH2O. Changes in vasomotor tone were assessed as diameter changes on videotaped recordings. Afferent arterioles responded to the angiotensins and vasopressin with dose-dependent reductions in vascular diameters with half-maximum responses being observed at concentrations between 10(-9) and 10(-8) M. Responses to ANG II and III were inhibited by saralasin. Contractile responses to ANG II and vasopressin were not altered by prior occlusion of the efferent arteriole, suggesting that afferent vasoconstriction does not represent a myogenic reaction to an increase in efferent resistance. The vasoconstrictor response to ANG II was largely eliminated by removal of the glomerulus and the distal-most portion of the afferent arteriole, whereas the response to vasopressin remained intact. Our data are consistent with the notion that the juxtaglomerular apparatus (JGA) and/or glomerulus may control proximal afferent arteriolar contractility by electrotonic or myogenic coupling mechanisms or by producing cofactors that modulate vasomotor responses.

1985 ◽  
Vol 248 (6) ◽  
pp. F779-F784 ◽  
Author(s):  
R. M. Edwards

The effects of arachidonic acid, prostaglandins (PG) I2, E2, D2, and F2 alpha on norepinephrine- (NE) and angiotensin II- (ANG II) induced tone were examined in interlobular arteries and afferent and efferent arterioles isolated from rabbit kidney. Arachidonic acid at 10(-5) M produced a rapid relaxation of NE-induced tone in all three vessel types. The vasodilatory effect of arachidonic acid but not acetylcholine was blocked by meclofenamate. In interlobular arteries, PGE2, and PGI2 caused a dose-dependent relaxation of NE-induced tone with a concentration causing the half-maximal response (ED50) of 1.2 and 4.6 X 10(-8) M, respectively. PGD2 caused a small but significant relaxation at 10(-7) M and above, whereas PGF2 alpha was inactive. In afferent arterioles contracted with NE, PGE2 and PGI2 caused identical dose-dependent relaxations. Significant effects were observed at concentrations between 10(-11) and 10(-10) M with ED50 values of 1.7 X 10(-8) M for PGE2 and 8.7 X 10(-9) M for PGI2. PGD2 had significant effects only at 10(-5) M, whereas PGF2 alpha was without effect. In contrast to the preglomerular vessels, efferent arterioles responded only to PGI2 (ED50, 9.7 X 10(-9) M), and the other arachidonic acid metabolites had no effect on lumen diameter. PGI2 antagonized the vasoconstrictive effects of both NE and ANG II in this vessel segment. The results demonstrate that of the prostanoids tested only PGE2 and PGI2 were effective in antagonizing vasoconstrictor stimuli in isolated renal microvessels. Furthermore, the rabbit renal microvasculature displays segmental heterogeneity for the vasodilatory PGs in that PGI2 affected both pre- and postglomerular arterioles, whereas PGE2 was effective only on the preglomerular microvessels.


1983 ◽  
Vol 244 (5) ◽  
pp. F526-F534 ◽  
Author(s):  
R. M. Edwards

Interlobular arteries and superficial afferent and efferent arterioles were isolated from rabbit kidney, and the effects of intraluminal pressure, norepinephrine (NE), and angiotensin II (ANG II) on lumen diameter were examined. A single microvessel was dissected and one end was cannulated. The other end of the vessel was occluded and lumen diameter was measured at fixed intraluminal pressures. With step increases in intraluminal pressure over the range of 70-180 mmHg, lumen diameters of the interlobular arteries and afferent arterioles remained constant or decreased by up to 11%. In contrast, lumen diameters of efferent arterioles continued to increase as intraluminal pressure was elevated. In all three vessels NE (10(-9) to 10(-5) M) caused a dose-dependent decrease in lumen diameter. However, only the efferent arteriole responded to ANG II (10(-12) to 10(-8) M). The contractile response of the efferent arteriole to NE or ANG II was localized to the first 50-75 micrometers of the vessel as it emerged from the glomerulus. This finding suggests that smooth muscle cells are located only in this portion of the efferent arteriole. It is concluded that at least part of the autoregulation of renal blood flow can be explained by a myogenic mechanism in preglomerular vessels and that ANG II acts primarily on postglomerular segments of the rabbit renal microcirculation.


1990 ◽  
Vol 259 (1) ◽  
pp. F157-F163 ◽  
Author(s):  
E. W. Inscho ◽  
P. K. Carmines ◽  
L. G. Navar

The present study was designed to evaluate, at the microvascular level, the ability of prostaglandins E2 (PGE2) and I2 (PGI2) to counteract the afferent vasoconstrictor effects of angiotensin II (ANG II) and norepinephrine (NE). The renal microvasculature of rats pretreated with captopril and indomethacin was studied directly by use of the in vitro blood-perfused juxtamedullary nephron technique combined with videomicroscopy. Afferent arterioles averaged 22.7 +/- 0.6 microns ID (n = 59) under control conditions. Topical administration of PGE2 revealed a concentration-dependent afferent vasoconstriction, whereas PGI2 (10(-7) to 10(-5) M) failed to significantly alter afferent arteriolar diameter. Afferent arterioles constricted during exposure to either 10(-9) M ANG II (-15 +/- 3%, n = 13) or 10(-7) M NE (-19 +/- 3%, n = 13). Addition of PGE2 (10(-6) M) to the bathing solution enhanced the vasoconstrictor influences of ANG II and NE by an additional 18 +/- 6 and 13 +/- 4%, respectively. In contrast, while 10(-6) M PGI2 had no effect on ANG II-induced afferent vasoconstriction, it did produce a 30% attenuation of NE-induced constriction. Furthermore, pretreatment of the tissue with 10(-6) M PGI2 prevented development of NE-induced afferent vasoconstriction. Thus, although local tissue prostanoid concentrations are unknown, it appears that low micromolar concentrations of PGE2 elicit an afferent arteriolar constriction that can accentuate the vascular actions of ANG II and NE on rat juxtamedullary afferent arterioles. In contrast, PGI2 can counteract the vasoconstrictor response to NE, but not ANG II, in this experimental setting.


1997 ◽  
Vol 273 (2) ◽  
pp. F274-F282 ◽  
Author(s):  
J. D. Imig ◽  
P. C. Deichmann

Activation of angiotensin receptors activates phospholipase A2 (PLA2) in various tissues, resulting in the release of arachidonic acid and formation of vasoactive metabolites. The present study examined the role of the lipoxygenase and cytochrome P-450 pathways by evaluating the effects of PLA2, cyclooxygenase, lipoxygenase, and epoxygenase inhibition on the afferent arteriolar responses to angiotensin II (ANG II) and norepinephrine in the vitro perfused rat juxtamedullary nephron preparation. ANG II (0.01-100 nM) resulted in a dose-dependent afferent arteriolar vasoconstriction ranging from 3 +/- 1 to 32 +/- 2% (n = 47). Norepinephrine at 0.01, 0.1, and 1.0 microM also decreased afferent arteriolar diameter by 5 +/- 1, 17 +/- 1, and 34 +/- 2%, respectively (n = 43). In the presence of arachidonyl trifluoromethyl ketone (AACOCF3, 20 microM), a PLA2 inhibitor, afferent arteriolar vasoconstriction to ANG II (100 nM) was attenuated, and the diameter decreased by 23 +/- 4% (n = 7). The cyclooxygenase inhibitor, indomethacin (10 microM), and the cyclooxygenase-2 inhibitor, NS-398 (10 microM), did not affect the afferent arteriolar response to ANG II. The lipoxygenase inhibitor biacalein (1 microM) attenuated the afferent arteriolar response to ANG II, and vessel diameter decreased by 11 +/- 5% (n = 6) in response to 100 nM ANG II. On the other hand, miconazole (1 microM), a selective epoxygenase inhibitor, enhanced the afferent arteriolar vasoconstriction to 100 nM ANG II. 17-Octadecynoic acid (17-ODYA, 1 microM), an inhibitor of hydroxylase and epoxygenase metabolism of arachidonic acid, also increased the responsiveness of the afferent arteriole. PLA2, lipoxygenase, or cytochrome P-450 inhibition had no effect on the afferent arteriolar vasoconstriction to norepinephrine. The afferent arteriolar vasoconstrictor response to norepinephrine (0.1 microM) was enhanced by indomethacin or NS-398, and diameter decreased by 25 +/- 3% and 28 +/- 4%, respectively. Results of this study suggest that metabolites of the cyclooxygenase pathway attenuate the afferent arteriolar vasoconstrictor effect of norepinephrine. Furthermore, these data suggest that activation of PLA2 is involved in part of the afferent arteriolar response to ANG II and that metabolites of the lipoxygenase pathway augment and metabolites of the epoxygenase pathway attenuate the afferent arteriolar vasoconstrictor effect of ANG II.


2005 ◽  
Vol 288 (4) ◽  
pp. F785-F791 ◽  
Author(s):  
Susan K. Fellner ◽  
William J. Arendshorst

ANG II induces a rise in cytosolic Ca2+ ([Ca2+]i) in vascular smooth muscle (VSM) cells via inositol trisphosphate receptor (IP3R) activation and release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ signal is augmented by calcium-induced calcium release (CICR) and by cyclic adeninediphosphate ribose (cADPR), which sensitizes the ryanodine-sensitive receptor (RyR) to Ca2+ to further amplify CICR. cADPR is synthesized from β-nicotinamide adenine dinucleotide (NAD+) by a membrane-bound bifunctional enzyme, ADPR cyclase. To investigate the possibility that ANG II activates the ADPR cyclase of afferent arterioles, we used inhibitors of the IP3R, RyR, and ADPR cyclase. Afferent arterioles were isolated from rat kidney with the magnetized microsphere and sieving technique and loaded with fura-2 to measure [Ca2+]i. In Ca2+-containing buffer, ANG II increased [Ca2+]i by 125 ± 10 nM. In the presence of the IP3R antagonists TMB-8 and 2-APB, the peak responses to ANG II were reduced by 74 and 81%, respectively. The specific antagonist of cADPR 8-Br ADPR and a high concentration of ryanodine (100 μM) inhibited the ANG II-induced increases in [Ca2+]i by 75 and 69%, respectively. Nicotinamide and Zn2+ are known inhibitors of the VSM ADPR cyclase. Nicotinamide diminished the [Ca2+]i response to ANG II by 66%. In calcium-free buffer, Zn2+ reduced the ANG II response by 68%. Simultaneous blockade of the IP3 and cADPR pathways diminished the [Ca2+]i response to ANG II by 83%. We conclude that ANG II initiates Ca2+ mobilization from the SR in afferent arterioles via the classic IP3R pathway and that ANG II may lead to activation of the ADPR cyclase to form cADPR, which, via its action on the RyR, substantially augments the Ca2+ response.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kayoko Miyata ◽  
Ryousuke Satou ◽  
L Gabriel Navar

Introduction: We have demonstrated that Ang II augments angiotensinogen (AGT) expression in rat preglomerular vascular smooth muscle cells (VSMCs). However, it is unclear if endothelial cells (ECs) are involved in augmentation of AGT in renal afferent arterioles. Hypothesis: We assessed the hypothesis that the ECs respond to paracrine signals that Ang II contribute to AGT augmentation in VSMCs. Objective: We established primary cultures of preglomerular ECs and examined the effects of Ang II and/or culture medium from ECs on AGT expression in preglomerular VSMCs. Methods and Results: We established primary cultures of preglomerular ECs, isolated from afferent arterioles of Sprague-Dawley rats. The cells were identified as ECs by being positive for a marker, CD34 and endothelial NOS and negative for alpha-SMA (a marker for VSMCs) and P4H-b (a marker for Fibroblasts) by immnostaining. The expression levels of AGT mRNA and renin mRNA in preglomerular ECs were examined by real-time RT-PCR. Ang II (100 pmol/L) increased AGT mRNA levels (1.34 +/- 0.16, by 100 pmol/L, N=4) and Renin mRNA levels (6.16 +/- 0.96, by 100 nmol/L, N=4) in ECs. On the other hand, the same dose of Ang II suppressed Renin mRNA expression in isolated Juxtaglomerular cells (JGs). These results indicate that preglomerular ECs are respond to Ang II and exclude the possible contamination of JGs into ECs. 100 pmol/L of Ang II increased AGT mRNA expression levels (1.37 +/- 0.03, relative ratio, N=4) in preglomerular VSMCs and the culture medium of ECs without Ang II treatment also more increased AGT mRNA expression (1.62 +/- 0.13, relative ratio, N=4) in preglomerular VSMCs. The AGT mRNA expression augmentation was enhanced when preglomerular VSMCs were treated with culture medium of Ang II-treated preglomerular ECs (2.39 +/- 0.41, relative ratio, N=4). The synergistic effects of Ang II and preglomerular ECs were also observed in PAI-1 expression in preglomerular VSMCs. Conclusion: These data demonstrate that preglomerular ECs contribute to Ang II-upregulation of AGT in renal afferent arterioles leading to further Ang II augmentation, which leads to increases in inflammatory and sclerotic factors in preglomerular VSMCs.


1986 ◽  
Vol 251 (4) ◽  
pp. F610-F618 ◽  
Author(s):  
P. K. Carmines ◽  
T. K. Morrison ◽  
L. G. Navar

The purpose of this study was to determine the specific renal microvascular segments that are functionally responsive to angiotensin II (ANG II) and other vasoactive hormones. Experiments were performed on juxtamedullary tissue from captopril-treated rats during perfusion with blood at a constant pressure of 110 mmHg. Epifluorescence videomicroscopy was utilized to measure diameters of arcuate and interlobular arteries (ART), mid- (MA) and late- (LA) afferent arterioles, and efferent arterioles (EA). Norepinephrine (700 nM) significantly decreased, and sodium nitroprusside (380 nM) increased, inside diameters of all segments. Topical application of ANG II (0.01 to 1 nM) induced significant reductions in diameters of all vessel segments: ART, 17.5 +/- 2.0%; MA, 19.6 +/- 2.5%; LA, 13.5 +/- 1.5%; and EA, 16.9 +/- 2.7%. The preglomerular response to ANG II was blocked by saralasin (10 microM) and, in most cases, was dose dependent; however, an initial hypersensitivity to low ANG II doses (30% decrease in diameter) was exhibited by 38% of the preglomerular vessels studied. Under these experimental conditions, single-nephron glomerular filtration rate decreased significantly in response to 0.01 nM ANG II exposure. These observations demonstrate that physiological concentrations of ANG II can elicit receptor-dependent and reversible vasoconstriction of the juxtamedullary nephron microvasculature at both pre- and postglomerular sites.


1993 ◽  
Vol 264 (1) ◽  
pp. H190-H195 ◽  
Author(s):  
J. D. Imig ◽  
D. Gebremedhin ◽  
D. R. Harder ◽  
R. J. Roman

The effect of erythrocytes (red blood cells, RBC) on vascular tone in the renal microcirculation was examined using the juxtamedullary nephron microvascular preparation perfused in vitro with a physiological salt solution containing 5% albumin. The basal diameters of the arcuate, interlobular, proximal, and distal afferent arterioles averaged 444 +/- 24, 74 +/- 3, 29 +/- 1, and 19 +/- 1 micron, respectively, when perfused with a cell-free solution at a pressure of 80 mmHg. The diameters of the arcuate and interlobular arteries increased by 14 +/- 4 and 13 +/- 4%, respectively, whereas the diameter of the proximal and distal portions of the afferent arterioles decreased by 7 +/- 2% when perfusion pressure was elevated from 80 to 160 mmHg. The addition of RBC to the perfusate reduced the basal diameters of interlobular and afferent arterioles by 11 +/- 4 and 15 +/- 3%, respectively. The maximal vasoconstrictor response was seen after the addition of only 1% RBC to the perfusate. Removal of platelets did not block the vasoconstrictor response to addition of RBC to the perfusate. The role of endothelium-derived relaxing factor (EDRF) in the vasoconstrictor response to RBC was studied by addition of nitric oxide synthase inhibitor, N omega-nitro-L-arginine (L-NNA, 100 microM) to the perfusate. L-NNA reduced the basal diameters of interlobular and afferent arterioles by 7 +/- 3 and 9 +/- 3%, respectively, and abolished the vasoconstrictor response to RBC. L-NNA had no effect on the pressure-diameter relationships of the preglomerular vasculature when added to perfusates already containing RBC.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Lingli Li ◽  
EnYin Lai ◽  
Zaiming Luo ◽  
Glenn Solis ◽  
Margarida Mendonca ◽  
...  

1998 ◽  
Vol 274 (3) ◽  
pp. F516-F524 ◽  
Author(s):  
Atsuhiro Ichihara ◽  
Edward W. Inscho ◽  
John D. Imig ◽  
L. Gabriel Navar

This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 ± 0.2 μm) and efferent (18.5 ± 0.2 μm) arterioles of kidneys harvested from male Sprague-Dawley rats, using the blood-perfused juxtamedullary nephron technique. Superfusion with the specific nNOS inhibitor, S-methyl-l-thiocitrulline (l-SMTC), decreased afferent and efferent arteriolar diameters, and these decreases in arteriolar diameters were prevented by interruption of distal volume delivery by papillectomy. When 10 mM acetazolamide was added to the blood perfusate to increase volume delivery to the macula densa segment, afferent arteriolar vasoconstrictor responses tol-SMTC were enhanced, but this effect was again completely prevented after papillectomy. In contrast, the arteriolar diameter responses to the nonselective NOS inhibitor, N ω-nitro-l-arginine (l-NNA) were only attenuated by papillectomy.l-SMTC (10 μM) enhanced the efferent arteriolar vasoconstrictor response to ANG II but did not alter the afferent arteriolar vasoconstrictor responsiveness to ANG II. In contrast, l-NNA (100 μM) enhanced both afferent and efferent arteriolar vasoconstrictor responses to ANG II. These results indicate that the modulating influence of nNOS on afferent arteriolar tone of juxtamedullary nephrons is dependent on distal tubular fluid flow. Furthermore, nNOS exerts a differential modulatory action on the juxtamedullary microvasculature by enhancing efferent, but not afferent, arteriolar responsiveness to ANG II.


Sign in / Sign up

Export Citation Format

Share Document