Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy

1997 ◽  
Vol 273 (5) ◽  
pp. F777-F782 ◽  
Author(s):  
Arlene B. Chapman ◽  
Stacy Zamudio ◽  
Whitney Woodmansee ◽  
Aicha Merouani ◽  
Fritz Osorio ◽  
...  

Blood pressure decreases during early pregnancy in association with a decrease in peripheral vascular resistance and increases in renal plasma flow and glomerular filtration rate. These early changes suggest a potential association with corpora lutea function. To determine whether peripheral vasodilation occurs following ovulation, we studied 16 healthy women in the midfollicular and midluteal phases of the menstrual cycle. A significant decrease in mean arterial pressure in the midluteal phase of the cycle (midfollicular of 81.7 ± 2.0 vs. midluteal of 75.4 ± 2.3 mmHg, P< 0.005) was found in association with a decrease in systemic vascular resistance and an increase in cardiac output. Renal plasma flow and glomerular filtration rate increased. Plasma renin activity and aldosterone concentration increased significantly in the luteal phase accompanied by a decrease in atrial natriuretic peptide concentration. Serum sodium, chloride, and bicarbonate concentrations and osmolarity also declined significantly in the midluteal phase of the menstrual cycle. Urinary adenosine 3′,5′-cyclic monophosphate (cAMP) excretion increased in the luteal compared with the follicular phase, whereas no changes in urinary cGMP or NO2/NO3excretion were found. Thus peripheral vasodilation occurs in the luteal phase of the normal menstrual cycle in association with an increase in renal plasma flow and filtration. Activation of the renin-angiotensin-aldosterone axis is found in the luteal phase of the menstrual cycle. These changes are accompanied by an increase in urinary cAMP excretion indicating potential vasodilating mediators responsible for the observed hemodynamic changes.

1971 ◽  
Vol 10 (01) ◽  
pp. 16-24
Author(s):  
J. Fog Pedersen ◽  
M. Fog Pedersen ◽  
Paul Madsen

SummaryAn accurate catheter-free technique for clinical determination simultaneouslyof glomerular filtration rate and effective renal plasma flow by means of radioisotopes has been developed. The renal function is estimated by the amount of radioisotopes necessary to maintain a constant concentration in the patient’s blood. The infusion pumps are steered by a feedback system, the pumps being automatically turned on when the radiation measured over the patient’s head falls below a certain preset level and turned off when this level is again readied. 131I-iodopyracet was used for the estimation of effective renal plasma flow and125I-iothalamate estimation of the glomerular filtration rate. These clearances were compared to the conventional bladder clearances and good correlation was found between these two clearance methods (correlation coefficients 0.97 and.90 respectively). The advantages and disadvantages of this new clearance technique are discussed.


1991 ◽  
Vol 81 (2) ◽  
pp. 271-279 ◽  
Author(s):  
P. G. McNally ◽  
F. Baker ◽  
N. Mistry ◽  
J. Walls ◽  
J. Feehally

1. Nifedipine ameliorates cyclosporin A-induced renal impairment in surgically intact (two-kidney) rats. This study investigates the effect of nifedipine on cyclosporin A nephrotoxicity in spontaneously hypertensive rats after either uninephrectomy or uninephrectomy with contralateral renal denervation. 2. Fourteen days after uninephrectomy pair-fed rats were injected for 14 days with cyclosporin A (25 mg/kg body weight) via the subcutaneous route and with nifedipine (0.1 mg/kg body weight) via the intraperitoneal route. Renal and systemic haemodynamics were measured in conscious unrestrained rats. 3. Whole-blood levels of cyclosporin A did not differ between groups (overall 352 ± 22 ng/ml, means ± sem). After uninephrectomy, cyclosporin A decreased the glomerular filtration rate (olive oil versus cyclosporin A: 0.96 ± 0.04 versus 0.70 ± 0.06 ml min−1 100 g body weight, P < 0.02) and effective renal plasma flow (1.94 ± 0.10 versus 1.38 ± 0.13, P < 0.01), and increased renal vascular resistance {(20.2 ± 1.8) × 104 versus (31.6 ± 3.3) × 104 kPa l−1 s [(20.2 ± 1.8) × 103 versus (31.6 ± 3.3) × 103 dyn s cm−5], P < 0.02} and mean arterial pressure (146.7 ± 6.7 versus 167.3 ± 2.9 mmHg, P < 0.05). Neither renal denervation nor nifedipine prevented the reduction in glomerular filtration rate or effective renal plasma flow induced by cyclosporin A. 4. This study infers that the sympathetic nervous system does not play an active role in cyclosporin A nephrotoxicity and demonstrates that the concomitant administration of nifedipine to rats with reduced renal mass does not ameliorate cyclosporin A-induced renal impairment.


1990 ◽  
Vol 79 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Michael Allon ◽  
Charles B. Pasque ◽  
Mariano Rodriguez

1. Eight nephrotic patients were studied in order to evaluate the effects of acute changes in renal plasma flow and glomerular filtration rate on renal solute and water handling, in the absence of plasma volume expansion. 2. The subjects were studied first after the administration of captopril, a manoeuvre that increased renal plasma flow without a significant change in glomerular filtration rate, and a second time after receiving combined therapy with captopril and ibuprofen, a manoeuvre that decreased glomerular filtration rate without a significant change in renal plasma flow. 3. After captopril therapy, despite the increase in renal plasma flow, there was no significant change in proximal sodium reabsorption (as estimated from fractional lithium reabsorption), urine volume or urine osmolality. 4. The decrease in glomerular filtration rate observed after the administration of captopril plus ibuprofen was associated with decreases in fractional excretion of sodium and urine volume, and an increase in urine osmolality. The changes in these parameters of tubular function were proportionate to the changes in glomerular filtration rate. Fractional proximal sodium reabsorption increased substantially. 5. These observations suggest that, in the absence of plasma volume expansion, an increase in renal plasma flow does not increase sodium or water excretion by the nephrotic kidney. Moreover, during acute decreases in glomerular filtration rate, glomerulotubular balance appears to be disrupted, resulting in disproportionately high rates of proximal tubule sodium reabsorption.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1027
Author(s):  
Lenka Stroobant ◽  
Siska Croubels ◽  
Laura Dhondt ◽  
Joske Millecam ◽  
Siegrid De Baere ◽  
...  

The aim of the current study was to investigate the simultaneous measurement of plasma p-aminohippuric acid (PAH) clearance as a potential marker to assess effective renal plasma flow (eRPF) and tubular secretion (TS), and the plasma clearance of iohexol (IOH) as a marker of the glomerular filtration rate in poultry species. The PAH was administered intravenously (IV) to broiler chickens, layers, turkeys, Muscovy ducks, and pigeons. Each animal received successively a single bolus dose of 10 mg PAH/kg bodyweight (BW) and 100 mg PAH/kg BW to assess the eRPF and TS, respectively. Simultaneously with both PAH administrations, a single IV bolus of 64.7 mg/kg BW of IOH was administered. A high linear correlation (R2 = 0.79) between eRPF, based on the clearance of the low dose of PAH, and BW was observed for the poultry species. The correlation between TS, based on the clearance of the high dose of PAH, and BW was moderate (R2 = 0.50). Finally, a moderate correlation (R2 = 0.68) was demonstrated between GFR and eRPF and between GFR and TS (R2 = 0.56). This presented pharmacokinetic approach of the simultaneous administration of IOH and PAH enabled a simultaneous evaluation of eRPF/TS and GFR, respectively, in different poultry species.


Sign in / Sign up

Export Citation Format

Share Document