scholarly journals Effect of growth hormone on renal and systemic acid-base homeostasis in humans

1998 ◽  
Vol 274 (4) ◽  
pp. F650-F657 ◽  
Author(s):  
Anita Sicuro ◽  
Katia Mahlbacher ◽  
Henry N. Hulter ◽  
Reto Krapf

The effects of recombinant human growth hormone (GH, 0.1 U ⋅ kg body wt−1 ⋅ 12 h−1) on systemic and renal acid-base homeostasis were investigated in six normal subjects with preexisting sustained chronic metabolic acidosis, induced by NH4Cl administration (4.2 mmol ⋅ kg body wt−1 ⋅ day−1). GH administration increased and maintained plasma bicarbonate concentration from 14.1 ± 1.4 to 18.6 ± 1.1 mmol/l ( P < 0.001). The GH-induced increase in plasma bicarbonate concentration was the consequence of a significant increase in net acid excretion that was accounted for largely by an increase in renal [Formula: see text]excretion sufficient in magnitude to override a decrease in urinary titratable acid excretion. During GH administration, urinary pH increased and correlated directly and significantly with urinary[Formula: see text] concentration. Urinary net acid excretion rates were not different during the steady-state periods of acidosis and acidosis with GH administration. Glucocorticoid and mineralocorticoid activities increased significantly in response to acidosis and were suppressed (glucocorticoid) or decreased to control levels (mineralocorticoid) by GH. The partial correction of metabolic acidosis occurred despite GH-induced renal sodium retention (180 mmol; gain in weight of 1.8 ± 0.2 kg, P< 0.005) and decreased glucocorticoid and mineralocorticoid activities. Thus GH (and/or insulin-like growth factor I) increased plasma bicarbonate concentration and partially corrected metabolic acidosis. This effect was generated in large part by and maintained fully by a renal mechanism (i.e., increased renal NH3 production and[Formula: see text]/net acid excretion).

1985 ◽  
Vol 248 (6) ◽  
pp. F796-F803 ◽  
Author(s):  
A. M. Kaufman ◽  
C. Brod-Miller ◽  
T. Kahn

Studies were performed to assess the role of changes in the excretion of citrate, a metabolic precursor of bicarbonate, in acid-base balance in diuretic-induced metabolic alkalosis. Rats on a low-chloride diet with sodium sulfate added were studied during a base-line period, 3 days of furosemide administration, and 4 days post-furosemide. During the period of furosemide administration, net acid excretion and plasma bicarbonate concentration increased. In the post-furosemide period, net acid excretion remained higher than base line but plasma bicarbonate concentration did not increase further. Citrate excretion was significantly higher in the post-furosemide period than in base line. Studies substituting sodium neutral phosphate or sodium bicarbonate for dietary sodium sulfate demonstrated greater increases in net acid excretion post-furosemide and, again, no increase in plasma bicarbonate concentration during this period. Citrate excretion was greater than in the sulfate group. The increment in citrate excretion was proportional to the base “load,” defined with respect to changes in net acid excretion and/or dietary bicarbonate. Thus, in these studies alterations of base excretion in the form of citrate play an important role in acid-base balance during diuretic-induced metabolic alkalosis.


2012 ◽  
Vol 303 (7) ◽  
pp. F991-F999 ◽  
Author(s):  
Alexandra Pallini ◽  
Henry N. Hulter ◽  
Jurgen Muser ◽  
Reto Krapf

Endothelin-1 inhibits collecting duct sodium reabsorption and stimulates proximal and distal tubule acidification in experimental animals both directly and indirectly via increased mineralocorticoid activity. Diet-induced acid loads have been shown to increase renal endothelin-1 activity, and it is hypothesized that increased dietary acid-induced endothelin-1 activity may be a causative progression factor in human renal insufficiency and that this might be reversed by provision of dietary alkali. We sought to clarify, in normal human volunteers, the role of endothelin-1 in renal acidification and to determine whether the effect is dependent on dietary sodium chloride. Acid-base equilibrium was studied in seven normal human volunteers with experimentally induced metabolic acidosis [NH4Cl 2.1 mmol·kg body weight (BW)−1·day−1] with and without inhibition of endogenous endothelin-1 activity by the endothelin A/B-receptor antagonist bosentan (125 BID p.o./day) both during dietary NaCl restriction (20 mmol/day) and NaCl repletion (2 mmol NaCl·kg BW−1·day−1). During NaCl restriction, but not in the NaCl replete state, bosentan significantly increased renal net acid excretion in association with stimulation of ammoniagenesis resulting in a significantly increased plasma bicarbonate concentration (19.0 ± 0.8 to 20.1 ± 0.9 mmol/l) despite a decrease in mineralocorticoid activity and an increase in endogenous acid production. In pre-existing human metabolic acidosis, endothelin-1 activity worsens acidosis by decreasing the set-point for renal regulation of plasma bicarbonate concentration, but only when dietary NaCl provision is restricted.


2008 ◽  
Vol 295 (6) ◽  
pp. C1658-C1667 ◽  
Author(s):  
Patricia Hafner ◽  
Rosa Grimaldi ◽  
Paola Capuano ◽  
Giovambattista Capasso ◽  
Carsten A. Wagner

The Cl−/anion exchanger pendrin (SLC26A4) is expressed on the apical side of renal non-type A intercalated cells. The abundance of pendrin is reduced during metabolic acidosis induced by oral NH4Cl loading. More recently, it has been shown that pendrin expression is increased during conditions associated with decreased urinary Cl− excretion and decreased upon Cl− loading. Hence, it is unclear if pendrin regulation during NH4Cl-induced acidosis is primarily due the Cl− load or acidosis. Therefore, we treated mice to increase urinary acidification, induce metabolic acidosis, or provide an oral Cl− load and examined the systemic acid-base status, urinary acidification, urinary Cl− excretion, and pendrin abundance in the kidney. NaCl or NH4Cl increased urinary Cl− excretion, whereas (NH4)2SO4, Na2SO4, and acetazolamide treatments decreased urinary Cl− excretion. NH4Cl, (NH4)2SO4, and acetazolamide caused metabolic acidosis and stimulated urinary net acid excretion. Pendrin expression was reduced under NaCl, NH4Cl, and (NH4)2SO4 loading and increased with the other treatments. (NH4)2SO4 and acetazolamide treatments reduced the relative number of pendrin-expressing cells in the collecting duct. In a second series, animals were kept for 1 and 2 wk on a low-protein (20%) diet or a high-protein (50%) diet. The high-protein diet slightly increased urinary Cl− excretion and strongly stimulated net acid excretion but did not alter pendrin expression. Thus, pendrin expression is primarily correlated with urinary Cl− excretion but not blood Cl−. However, metabolic acidosis caused by acetazolamide or (NH4)2SO4 loading prevented the increase or even reduced pendrin expression despite low urinary Cl− excretion, suggesting an independent regulation by acid-base status.


1984 ◽  
Vol 56 (6) ◽  
pp. 1640-1646 ◽  
Author(s):  
N. E. Madias ◽  
W. H. Bossert ◽  
H. J. Adrogue

Systematic data are not available with regard to the anticipated appropriate responses of arterial PCO2 to primary alterations in plasma bicarbonate concentration. In the present study, we attempted to rigorously characterize the ventilatory response to chronic metabolic acid-base disturbances of graded severity in the dog. Animals with metabolic acidosis produced by prolonged HCl feeding and metabolic alkalosis of three different modes of generation, i.e., diuretics (ethacrynic acid or chlorothiazide), gastric drainage, and administration of deoxycorticosterone acetate (alone or in conjunction with oral sodium bicarbonate), were examined. The results indicate the existence of a significant and highly predictable ventilatory response to chronic metabolic acid-base disturbances. Moreover, the magnitude of the ventilatory response appears to be uniform throughout a wide spectrum of chronic metabolic acid-base disorders extending from severe metabolic acidosis to severe metabolic alkalosis; on average, arterial PCO2 is expected to change by 0.74 Torr for a 1-meq/l chronic change in plasma bicarbonate concentration of metabolic origin. Furthermore, the data suggest that the ventilatory response to chronic metabolic alkalosis is independent of the particular mode of generation.


2001 ◽  
pp. 267-272 ◽  
Author(s):  
G Aimaretti ◽  
G Fanciulli ◽  
S Bellone ◽  
M Maccario ◽  
E Arvat ◽  
...  

OBJECTIVE: Adults with severe GH deficiency (GHD) need recombinant human growth hormone (rhGH) replacement to restore body composition, structure functions and metabolic abnormalities. The optimal rhGH dose for replacement has been progressively reduced to avoid side effects. The aim of the present study was to define the minimal rhGH dose able to increase both IGF-I and IGF binding protein (BP)-3 levels in GHD and to verify the possible change in GH sensitivity. DESIGN AND PATIENTS: To this goal, we studied the effect of 4-day treatment with 3 rhGH doses (1.25, 2.5 and 5.0 microg/kg/day) on IGF-I and IGFBP-3 levels in 25 panhypopituitary adults with severe GHD (12 males and 13 females, age: 44.5+/-3.0 years, body mass index (BMI): 27.0+/-0.9 kg/m(2)) and 21 normal young adult volunteers (NV, 12 males and 9 females, age: 30.5+/-2.0 years, BMI: 20.8+/-0.5 kg/m(2)). RESULTS: Basal IGF-I and IGFBP-3 levels in GHD were lower (P<0.001) than in NV. In NV the 1.25 microg/kg dose of rhGH did not modify IGF-I levels. The dose of 2.5 microg/kg rhGH significantly increased IGF-I levels in men (P<0.001) but not in women, while the 5.0 microg/kg dose increased IGF-I levels in both sexes (P<0.001). IGFBP-3 levels were not modified by any of the administered rhGH doses. In GHD patients, all rhGH doses increased IGF-I levels 12 h after both the first (P<0.01) and the fourth rhGH dose (P<0.001). At the end of treatment percentage increases in IGF-I were higher (P<0.001) in GHD patients than in NV. In contrast with NV, in GHD patients the IGF-I response to short-term stimulation with rhGH was independent of gender. Moreover, GHD patients showed increases in IGFBP-3 after the fourth administration of both 2.5 and 5.0 microg/kg rhGH. CONCLUSION: The results of the present study demonstrate that the minimal rhGH dose able to increase IGF-I and IGFBP-3 levels in GHD patients is lower than in normal subjects, at least after a very short treatment. This evidence suggests an enhanced peripheral GH sensitivity in GH deprivation.


1989 ◽  
Vol 120 (2) ◽  
pp. 161-169 ◽  
Author(s):  
R. Demura ◽  
N. Ishiwatari ◽  
T. Nomuar ◽  
H. Demura ◽  
K. Shizume ◽  
...  

Abstract. Recombinant human growth hormone is more antigenic than pituitary preparations. Since GH antibodies interfere with radioimmunoassay of GH, we measured plasma free and total GH in patients with pituitary dwarfism with GH antibodies during treatment with a recombinant methionyl GH preparation. Plasma free GH was measured in the supernatant after polyethylene glycol precipitation. Total GH was measured after extracting plasma with acid-ethanol. In normal subjects, both free and total GH levels were similar to those measured in plasma by a direct conventional RIA. Peak free GH levels after administration of 4 IU methionyl GH to 3 normal subjects were 38.0,30.7 and 13.2 μg/l, values similar to those measured in most of the patients with GH antibodies. All values were undetectable in one patient with a very high antibody titre. Total GH levels were similar to free GH levels in normal subjects. In patients with GH antibodies, total GH levels were high compared with their free levels, but similar to those assayed by conventional RIA. The patient with the highest antibody titre had total GH levels which were the lowest of those observed in the patients with GH antibodies in spite of having the highest GH levels measured by conventional RIA. The antibody in this particular case may have a high capacity and a high affinity. A relatively poor growth rate in this patient may be associated with the finding of undetectable free GH levels. Measurement of plasma free and total GH may be of value in examining GH dynamics and their relation to the clinical effectiveness of GH treatment in patients with GH antibodies.


2021 ◽  
pp. ASN.2019060613
Author(s):  
Jeppe S. M. Olsen ◽  
Samuel Svendsen ◽  
Peder Berg ◽  
Vibeke S. Dam ◽  
Mads V. Sorensen ◽  
...  

BackgroundThe electroneutral Na+/HCO3− cotransporter NBCn1 (Slc4a7) is expressed in basolateral membranes of renal medullary thick ascending limbs (mTALs). However, direct evidence that NBCn1 contributes to acid-base handling in mTALs, urinary net acid excretion, and systemic acid-base homeostasis has been lacking.MethodsMetabolic acidosis was induced in wild-type and NBCn1 knockout mice. Fluorescence-based intracellular pH recordings were performed and NH4+ transport measured in isolated perfused mTALs. Quantitative RT-PCR and immunoblotting were used to evaluate NBCn1 expression. Tissue [NH4+] was measured in renal biopsies, NH4+ excretion and titratable acid quantified in spot urine, and arterial blood gasses evaluated in normoventilated mice.ResultsBasolateral Na+/HCO3− cotransport activity was similar in isolated perfused mTALs from wild-type and NBCn1 knockout mice under control conditions. During metabolic acidosis, basolateral Na+/HCO3− cotransport activity increased four-fold in mTALs from wild-type mice, but remained unchanged in mTALs from NBCn1 knockout mice. Correspondingly, NBCn1 protein expression in wild-type mice increased ten-fold in the inner stripe of renal outer medulla during metabolic acidosis. During systemic acid loading, knockout of NBCn1 inhibited the net NH4+ reabsorption across mTALs by approximately 60%, abolished the renal corticomedullary NH4+ gradient, reduced the capacity for urinary NH4+ excretion by approximately 50%, and delayed recovery of arterial blood pH and standard [HCO3−] from their initial decline.ConclusionsDuring metabolic acidosis, NBCn1 is required for the upregulated basolateral HCO3− uptake and transepithelial NH4+ reabsorption in mTALs, renal medullary NH4+ accumulation, urinary NH4+ excretion, and early recovery of arterial blood pH and standard [HCO3−]. These findings support that NBCn1 facilitates urinary net acid excretion by neutralizing intracellular H+ released during NH4+ reabsorption across mTALs.


1981 ◽  
Vol 240 (5) ◽  
pp. F381-F387
Author(s):  
H. N. Hulter ◽  
E. L. Bonner ◽  
R. D. Glynn ◽  
A. Sebastian

Studies in dogs were carried out to investigate the effects of chronic administration of the mineralcorticoid antagonist spironolactone (15 mg/kg orally) on renal and systemic acid-base metabolism. In adrenalectomized dogs administered fixed mineralocorticoid and glucocorticoid replacement, spironolactone resulted in a definite renal antimineralocorticoid effect, as evidenced by natriuresis and chloruresis, and sustained metabolic acidosis and hyperkalemia due in part to impaired renal secretion of hydrogen and potassium. In adrenalectomized dogs receiving physiological glucocorticoid without mineralocorticoid, metabolic acidosis also occurred, but a marked stimulatory effect of spironolactone on net acid excretion occurred in association with increased urinary SO4-2 and total nitrogen excretion. Accordingly, spironolactone results in sustained renal tubular acidosis when administered in the presence of constant physiological levels of mineralocorticoid and glucocorticoid steroids. When administered under conditions of complete lack of mineralocorticoid activity, spironolactone exerts systemic and renal acid-base effects similar to those of a glucocorticoid steroid, namely, increased protein catabolism and sulfuric acid production with resultant extrarenal metabolic acidosis associated with increased net acid excretion.


2017 ◽  
Author(s):  
Patricia Valles ◽  
Jesus Moran-Farias ◽  
Daniel Batlle

Acid-base homeostasis by the kidney is maintained through proximal tubular reclamation of filtered bicarbonate and the excretion of the daily acid load by collecting duct type A intercalated cells. The impairment of either process results in renal tubular acidosis (RTA), a group of disorders characterized by a reduced net acid excretion and a persistent hyperchloremic, non–anion gap metabolic acidosis. The primary or hereditary forms of proximal (pRTA) and distal renal tubular acidosis (dRTA) have received increased attention because of advances in the understanding of the molecular mechanism, whereby mutations in the main proteins involved in acid-base transport result in either reduced bicarbonate reabsorption or reduced H+ secretion and impaired acid excretion. dRTA is characterized by reduced net acid excretion and an inability to lower urine pH despite severe acidemia (but minimal HCO3– wastage). pRTA (type 2), by contrast, is characterized by marked HCO3– wastage but preserved ability to lower urine pH when plasma HCO3– (and therefore filtered HCO3–) is below a certain threshold. In children with dRTA, growth retardation caused by chronic metabolic acidosis is the key manifestation but is fully reversible with appropriate alkali therapy if initiated early in life. A striking manifestation of many patients with dRTA is the development of severe hypokalemia that may cause muscle paralysis. In this review, we discuss these types of hereditary RTA and the mechanisms involved in the genesis of these inherited tubular disorders. This review contains 5 figures, 1 table, and 103 references. Key words: Proximal renal tubular acidosis (pRTA), Distal renal tubular acidosis (dRTA), Hyperchloremic, non–anion gap metabolic acidosis, Hypokalemia, Fractional HCO3– excretion, Urinary gap, Fanconi Syndrome.ATP6V1B1 and ATP6V0A4 gene mutations . Intercalated cells ,


Sign in / Sign up

Export Citation Format

Share Document