Ventilatory response to chronic metabolic acidosis and alkalosis in the dog

1984 ◽  
Vol 56 (6) ◽  
pp. 1640-1646 ◽  
Author(s):  
N. E. Madias ◽  
W. H. Bossert ◽  
H. J. Adrogue

Systematic data are not available with regard to the anticipated appropriate responses of arterial PCO2 to primary alterations in plasma bicarbonate concentration. In the present study, we attempted to rigorously characterize the ventilatory response to chronic metabolic acid-base disturbances of graded severity in the dog. Animals with metabolic acidosis produced by prolonged HCl feeding and metabolic alkalosis of three different modes of generation, i.e., diuretics (ethacrynic acid or chlorothiazide), gastric drainage, and administration of deoxycorticosterone acetate (alone or in conjunction with oral sodium bicarbonate), were examined. The results indicate the existence of a significant and highly predictable ventilatory response to chronic metabolic acid-base disturbances. Moreover, the magnitude of the ventilatory response appears to be uniform throughout a wide spectrum of chronic metabolic acid-base disorders extending from severe metabolic acidosis to severe metabolic alkalosis; on average, arterial PCO2 is expected to change by 0.74 Torr for a 1-meq/l chronic change in plasma bicarbonate concentration of metabolic origin. Furthermore, the data suggest that the ventilatory response to chronic metabolic alkalosis is independent of the particular mode of generation.

1964 ◽  
Vol 206 (4) ◽  
pp. 875-882 ◽  
Author(s):  
David P. Simpson

Citrate excretion has been studied in dogs under various conditions of acid-base balance in order to determine which factors are responsible for the increased citrate clearance present in metabolic alkalosis. A close relationship, significantly modified by systemic pH, was found between plasma bicarbonate concentration and citrate clearance. In the presence of an alkaline plasma pH, there was a linear relationship between changes in plasma bicarbonate concentration and changes in citrate clearance. Other experiments also demonstrated the influence of plasma bicarbonate concentration on citrate clearance at alkaline pH. Under acidotic conditions citrate clearances were low and changes in plasma bicarbonate concentration had little effect on citrate excretion. A change in plasma pH from an acidotic to an alkalotic state, with a constant plasma bicarbonate concentration, produced an increase in citrate clearance. Thus the coexistence in metabolic alkalosis of high plasma bicarbonate concentration and high plasma pH results in a markedly increased citrate clearance.


2012 ◽  
Vol 303 (7) ◽  
pp. F991-F999 ◽  
Author(s):  
Alexandra Pallini ◽  
Henry N. Hulter ◽  
Jurgen Muser ◽  
Reto Krapf

Endothelin-1 inhibits collecting duct sodium reabsorption and stimulates proximal and distal tubule acidification in experimental animals both directly and indirectly via increased mineralocorticoid activity. Diet-induced acid loads have been shown to increase renal endothelin-1 activity, and it is hypothesized that increased dietary acid-induced endothelin-1 activity may be a causative progression factor in human renal insufficiency and that this might be reversed by provision of dietary alkali. We sought to clarify, in normal human volunteers, the role of endothelin-1 in renal acidification and to determine whether the effect is dependent on dietary sodium chloride. Acid-base equilibrium was studied in seven normal human volunteers with experimentally induced metabolic acidosis [NH4Cl 2.1 mmol·kg body weight (BW)−1·day−1] with and without inhibition of endogenous endothelin-1 activity by the endothelin A/B-receptor antagonist bosentan (125 BID p.o./day) both during dietary NaCl restriction (20 mmol/day) and NaCl repletion (2 mmol NaCl·kg BW−1·day−1). During NaCl restriction, but not in the NaCl replete state, bosentan significantly increased renal net acid excretion in association with stimulation of ammoniagenesis resulting in a significantly increased plasma bicarbonate concentration (19.0 ± 0.8 to 20.1 ± 0.9 mmol/l) despite a decrease in mineralocorticoid activity and an increase in endogenous acid production. In pre-existing human metabolic acidosis, endothelin-1 activity worsens acidosis by decreasing the set-point for renal regulation of plasma bicarbonate concentration, but only when dietary NaCl provision is restricted.


1974 ◽  
Vol 46 (4) ◽  
pp. 539-549 ◽  
Author(s):  
M. Fulop ◽  
N. Dreyer ◽  
H. Tannenbaum

1. Previous studies of the ventilatory response to metabolic acidosis have usually considered only patients with arterial blood pH above 7·10. To define the response during more severe acidaemia, arterial CO2 tension and pH were measured in fifty-three episodes of diabetic ketoacidosis, including twenty-four with pH below 7·10, and ten with pH below 7·00. 2. The relation between arterial CO2 tension, and both blood pH and plasma bicarbonate concentration, in these cases with generally severe metabolic acidaemia (mean pH 7·12 ± SD 0·13), was very similar to the relations between those variables found by others in patients with less severe acidaemia, such as that due to renal failure. 3. As arterial blood hydrogen ion activity increased, arterial CO2 tension decreased inversely, reflecting well-sustained hyperventilation, even during profound acidaemia. 4. The inverse relation between arterial CO2 tension and hydrogen ion activity suggests that during metabolic acidosis, alveolar ventilation increases in direct proportion to the increased blood hydrogen ion activity.


1998 ◽  
Vol 274 (4) ◽  
pp. F650-F657 ◽  
Author(s):  
Anita Sicuro ◽  
Katia Mahlbacher ◽  
Henry N. Hulter ◽  
Reto Krapf

The effects of recombinant human growth hormone (GH, 0.1 U ⋅ kg body wt−1 ⋅ 12 h−1) on systemic and renal acid-base homeostasis were investigated in six normal subjects with preexisting sustained chronic metabolic acidosis, induced by NH4Cl administration (4.2 mmol ⋅ kg body wt−1 ⋅ day−1). GH administration increased and maintained plasma bicarbonate concentration from 14.1 ± 1.4 to 18.6 ± 1.1 mmol/l ( P < 0.001). The GH-induced increase in plasma bicarbonate concentration was the consequence of a significant increase in net acid excretion that was accounted for largely by an increase in renal [Formula: see text]excretion sufficient in magnitude to override a decrease in urinary titratable acid excretion. During GH administration, urinary pH increased and correlated directly and significantly with urinary[Formula: see text] concentration. Urinary net acid excretion rates were not different during the steady-state periods of acidosis and acidosis with GH administration. Glucocorticoid and mineralocorticoid activities increased significantly in response to acidosis and were suppressed (glucocorticoid) or decreased to control levels (mineralocorticoid) by GH. The partial correction of metabolic acidosis occurred despite GH-induced renal sodium retention (180 mmol; gain in weight of 1.8 ± 0.2 kg, P< 0.005) and decreased glucocorticoid and mineralocorticoid activities. Thus GH (and/or insulin-like growth factor I) increased plasma bicarbonate concentration and partially corrected metabolic acidosis. This effect was generated in large part by and maintained fully by a renal mechanism (i.e., increased renal NH3 production and[Formula: see text]/net acid excretion).


1976 ◽  
Vol 50 (4) ◽  
pp. 293-299 ◽  
Author(s):  
G. E. Levin ◽  
P. Collinson ◽  
D. N. Baron

1. Viable human leucocytes were isolated from venous blood and suspended in artificial media. Intracellular pH measurements were made by the dimethyloxazolidinedione technique in conditions simulating ‘respiratory’ or ‘metabolic’ acid-base disturbances. 2. Normal intracellular pH was 7·11 ± 0·02 (mean ± 2 sd) at an extracellular Pco2 of 5·8 kPa and a bicarbonate concentration of 25 mmol/l. 3. ‘Respiratory’ and ‘metabolic’ acidosis caused little change in pH1 although increases in Pco2 led to relatively greater falls in pH1 than did reduction in external bicarbonate concentration. 4. ‘Respiratory’ and ‘metabolic’ alkalosis caused similar and relatively greater increases in the pH1 when compared with the response to an external acidosis.


1988 ◽  
Vol 255 (1) ◽  
pp. F182-F187 ◽  
Author(s):  
A. M. Kaufman ◽  
T. Kahn

Studies were performed to evaluate whether alterations in the excretion of citrate, a metabolic precursor of bicarbonate, play a quantitatively important role in acid-base balance during bicarbonate feeding in the rat. Potassium depletion (K-DEPL), chloride depletion (Cl-DEPL), or potassium plus chloride depletion (KCl-DEPL) was produced by eliminating potassium, chloride, or potassium chloride from the diet. After 3 days of depletion, sodium bicarbonate (4,000 mueq/24 h) was added to the diet for 7 days. In all groups plasma bicarbonate concentration increased minimally during bicarbonate administration and was similar to normal controls receiving bicarbonate. In K-DEPL, citrate excretion was less than normal but bicarbonate excretion was greater than normal. In Cl-DEPL, bicarbonate excretion was less than normal but citrate excretion was greater than normal. In KCl-DEPL, bicarbonate and citrate excretion were similar to normal. Sodium bicarbonate was also administered to K-DEPL and KCl-DEPL rats in which plasma bicarbonate concentration averaged 32.9 meq/1. The reciprocal relationship between citrate and bicarbonate excretion was not altered by the profound metabolic alkalosis. Again, plasma bicarbonate concentration changed little with sodium bicarbonate administration. These studies suggest that the ability to excrete a base load remains intact despite potassium or chloride depletion or metabolic alkalosis. Complementary alterations of citrate and bicarbonate excretion play an important role in acid-base balance under these conditions.


1982 ◽  
Vol 52 (4) ◽  
pp. 1013-1017 ◽  
Author(s):  
A. Oren ◽  
B. J. Whipp ◽  
K. Wasserman

To determine the influence of altered carotid body drive on exercise ventilatory kinetics, five subjects performed four repetitions of constant-load cycle ergometer exercise during air and O2 breathing under each of the following conditions: 1) metabolic acidosis, (NH4Cl, 0.3 g . kg-1 . day-1); 2) metabolic alkalosis (NaHCO3, 0.7 g . kg-1 . day-1); and 3) control (CaCO3, 0.1 g . kg-1 . day-1). Ventilatory and gas exchange variables were computed, breath-by-breath, and the time constant of the ventilatory response in each condition was determined by a least-squares technique. While breathing air, metabolic acidosis caused the magnitude of the ventilatory response to increase and the time constant of the ventilatory kinetics to decrease. With metabolic alkalosis the increase in ventilation caused by exercise tended to be smaller and time constant larger although these changes were not statistically significant. Hyperoxia slowed the ventilatory response in the three acid-base conditions to a similar value. Thus hyperoxia slowed the ventilatory kinetics to a greater degree during acidosis than during control or alkalosis. We conclude that ventilatory dynamics during moderate exercise can be appreciably influenced by the acid-base status with acidosis significantly speeding the response dynamics. And, as these effects are abolished by hyperoxia, they appear to be mediated via the carotid bodies, in the human.


1991 ◽  
Vol 69 (11) ◽  
pp. 1784-1788 ◽  
Author(s):  
David H. Vandorpe ◽  
Steven P. Nadler ◽  
David Z. Levine

Rebound metabolic alkalosis is a transient alkalemia that is seen during recovery from NH4Cl-induced metabolic acidosis. The persistent elevation of plasma bicarbonate concentration is the result of continuing excretion of net acid by the kidney. Bicarbonate transport by inner medullary collecting ducts has been reported by others to proceed normally (i.e., bicarbonate reabsorption continues in this segment) during rebound metabolic alkalosis. No other segmental responses have been evaluated. Since the surface distal tubule of the rat is known to both reabsorb and secrete bicarbonate in vivo, it was of interest to determine the response of this segment. Our results show that the distal tubule microperfused in vivo during rebound metabolic alkalosis continues to reabsorb significant amounts of bicarbonate, despite the presence of systemic alkalemia that we have previously shown to be associated with distal tubule bicarbonate secretion.Key words: rebound metabolic alkalosis, distal tubule, micropuncture, bicarbonate reabsorption.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 126-129 ◽  
Author(s):  
Mariano Feriani ◽  
Claudio Ronco ◽  
Giuseppe La Greca

Our objective is to investigate transperitoneal buffer fluxes with solution containing lactate and bicarbonate, and to compare the final effect on body base balance of the two solutions. One hundred and four exchanges, using different dwell times, were performed in 52 stable continuous ambulatory peritoneal dialysis (CAPD) patients. Dialysate effluent lactate and bicarbonate and volumes were measured. Net dialytic base gain was calculated. Patients’ acid-base status and plasma lactate were determined. In lactate-buffered CAPD solution, lactate concentration in dialysate effluent inversely correlated with length of dwell time, but did not correlate with plasma lactate concentration and net ultrafiltration. Bicarbonate concentration in dialysate effluent correlated with plasma bicarbonate and dwell time but not with ultrafiltration. The arithmetic sum of the lactate gain and bicarbonate loss yielded the net dialytic base gain. Ultrafiltration was the most important factor affecting net dialytic base gain. A previous study demonstrated that in patients using a bicarbonate-buffered solution the net bicarbonate gain is a function of dwell time, ultrafiltration, and plasma bicarbonate. By combining the predicted data of the dialytic base gain with the calculated metabolic acid production, an approximate body base balance could be obtained with both lactate and bicarbonate-buffered CAPD solutions. The body base balance in CAPD patients is self-regulated by the feedback between plasma bicarbonate concentration and dialytic base gain. The level of plasma bicarbonate is determined by the dialytic base gain and the metabolic acid production. This can explain the large interpatient variability in acid-base correction. Bicarbonate-buffered CAPD solution is equal to lactate solution in correcting acid-base disorders of CAPD patients.


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


Sign in / Sign up

Export Citation Format

Share Document