renal secretion
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 7)

H-INDEX

29
(FIVE YEARS 0)

2021 ◽  
Vol 22 (12) ◽  
pp. 6439
Author(s):  
Blessy George ◽  
Xia Wen ◽  
Edgar A. Jaimes ◽  
Melanie S. Joy ◽  
Lauren M. Aleksunes

The organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) mediate the renal secretion of drugs. Recent studies suggest that ondansetron, a 5-HT3 antagonist drug used to prevent nausea and vomiting, can inhibit OCT2- and MATE1-mediated transport. The purpose of this study was to test the ability of five 5-HT3 antagonist drugs to inhibit the OCT2 and MATE1 transporters. The transport of the OCT2/MATE1 probe substrate ASP+ was assessed using two models: (1) HEK293 kidney cells overexpressing human OCT2 or MATE1, and (2) MDCK cells transfected with human OCT2 and MATE1. In HEK293 cells, the inhibition of ASP+ uptake by OCT2 listed in order of potency was palonosetron (IC50: 2.6 μM) > ondansetron > granisetron > tropisetron > dolasetron (IC50: 85.4 μM) and the inhibition of ASP+ uptake by MATE1 in order of potency was ondansetron (IC50: 0.1 μM) > palonosetron = tropisetron > granisetron > dolasetron (IC50: 27.4 μM). Ondansetron (0.5–20 μM) inhibited the basolateral-to-apical transcellular transport of ASP+ up to 64%. Higher concentrations (10 and 20 μM) of palonosetron, tropisetron, and dolasetron similarly reduced the transcellular transport of ASP+. In double-transfected OCT2-MATE1 MDCK cells, ondansetron at concentrations of 0.5 and 2.5 μM caused significant intracellular accumulation of ASP+. Taken together, these data suggest that 5-HT3 antagonist drugs may inhibit the renal secretion of cationic drugs by interfering with OCT2 and/or MATE1 function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. W. Harville ◽  
Y.-Y. Li ◽  
K. Pan ◽  
S. McRitchie ◽  
W. Pathmasiri ◽  
...  

AbstractUnderstanding of causal biology and predictive biomarkers are lacking for hypertensive disorders of pregnancy (HDP) and preterm birth (PTB). First-trimester serum specimens from 51 cases of HDP, including 18 cases of pre-eclampsia (PE) and 33 cases of gestational hypertension (GH); 53 cases of PTB; and 109 controls were obtained from the Global Alliance to Prevent Prematurity and Stillbirth repository. Metabotyping was conducted using liquid chromatography high resolution mass spectroscopy and nuclear magnetic resonance spectroscopy. Multivariable logistic regression was used to identify signals that differed between groups after controlling for confounders. Signals important to predicting HDP and PTB were matched to an in-house physical standards library and public databases. Pathway analysis was conducted using GeneGo MetaCore. Over 400 signals for endogenous and exogenous metabolites that differentiated cases and controls were identified or annotated, and models that included these signals produced substantial improvements in predictive power beyond models that only included known risk factors. Perturbations of the aminoacyl-tRNA biosynthesis, l-threonine, and renal secretion of organic electrolytes pathways were associated with both HDP and PTB, while pathways related to cholesterol transport and metabolism were associated with HDP. This untargeted metabolomics analysis identified signals and common pathways associated with pregnancy complications.


2020 ◽  
Vol 133 (1) ◽  
pp. 355-363
Author(s):  
Bujie Du ◽  
Yue Chong ◽  
Xingya Jiang ◽  
Mengxiao Yu ◽  
U‐Gling Lo ◽  
...  

2020 ◽  
Vol 60 (1) ◽  
pp. 351-359
Author(s):  
Bujie Du ◽  
Yue Chong ◽  
Xingya Jiang ◽  
Mengxiao Yu ◽  
U‐Gling Lo ◽  
...  

Author(s):  
Sarah Jane Commander ◽  
Huali Wu ◽  
Felix Boakye‐Agyeman ◽  
Chiara Melloni ◽  
Chi Dang Hornik ◽  
...  
Keyword(s):  

2020 ◽  
Vol 21 (14) ◽  
pp. 5157
Author(s):  
Marta Kantauskaitė ◽  
Anna Hucke ◽  
Moritz Reike ◽  
Sara Ahmed Eltayeb ◽  
Chuyan Xiao ◽  
...  

Vectorial transport of organic cations (OCs) in renal proximal tubules is mediated by sequential action of human OC transporter 2 (hOCT2) and human multidrug and toxic extrusion protein 1 and 2K (hMATE1 and hMATE2K), expressed in the basolateral (hOCT2) and luminal (hMATE1 and hMATE2K) plasma membranes, respectively. It is well known that hOCT2 activity is subjected to rapid regulation by several signaling pathways, suggesting that renal OC secretion may be acutely adapted to physiological requirements. Therefore, in this work, the acute regulation of hMATEs stably expressed in human embryonic kidney cells was characterized using the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) as a marker. A specific regulation of ASP+ transport by hMATE1 and hMATE2K measured in uptake and efflux configurations was observed. In the example of hMATE1 efflux reduction by inhibition of casein kinase II, it was also shown that this regulation is able to modify transcellular transport of ASP+ in Madin–Darby canine kidney II cells expressing hOCT2 and hMATE1 on the basolateral and apical membrane domains, respectively. The activity of hMATEs can be rapidly regulated by some intracellular pathways, which sometimes are common to those found for hOCTs. Interference with these pathways may be important to regulate renal secretion of OCs.


2020 ◽  
Vol 35 (1) ◽  
pp. S24
Author(s):  
Tomoki Imaoka ◽  
Sara Shum ◽  
Shih-Yu Chang ◽  
Alenka Chapron ◽  
Catherine K. Yeung ◽  
...  
Keyword(s):  

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 125 ◽  
Author(s):  
Ravindranath Gilibili ◽  
Vishwanath Kurawattimath ◽  
Bokka Murali ◽  
Yurong Lai ◽  
T. Mariappan ◽  
...  

Previously we reported that coproporphyrin-I (CP-I) is an optimal probe substrate for multidrug resistance-associated protein 2 (MRP2), and stimulation of MRP2-mediated transport is probe substrate-dependent. In the present investigation, we assessed if the in vitro stimulation is physiologically relevant. Similar to human MRP2 transport, CP-I was transported by rat Mrp2 in a typical Michaelis-Menten kinetics with apparent Km and Vmax values of 15 ± 6 µM and 161 ± 20 pmol/min/mg protein, respectively. In vivo Mrp2 functions were monitored by biliary and renal secretion of CP-I and its isomer CP-III, in bile-duct cannulated rats before and after treatment with mitoxantrone, progesterone, and verapamil. These compounds stimulated Mrp2-mediated CP-I transport in vitro. No significant increase in biliary or renal clearances, as well as in the cumulative amount of CP-I or CP-III eliminated in bile, were detected following treatment with the in vitro stimulators, indicating an in vitro to in vivo disconnect. In presence of 10 µM bilirubin, the in vitro stimulation was suppressed. We concluded that the in vitro stimulation of CP-I transport mediated by Mrp2 is not translatable in vivo, and proposed that the presence of endogenous compounds such as bilirubin in the liver may contribute to the in vitro to in vivo disconnect.


Sign in / Sign up

Export Citation Format

Share Document